Patents by Inventor Brian M. Cain

Brian M. Cain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20010043923
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Application
    Filed: March 7, 2001
    Publication date: November 22, 2001
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 6123700
    Abstract: A sealed, implantable, encapsulation device (20) for diffusing a biologically active product or function to an individual which includes a substantially non-porous fitting (32) including an inner surface (33) defining an access port (34). A permselective, porous, membrane (21), having an interior surface (22), cooperates with the fitting inner surface (33) to form a storage cavity (23) therebetween. The membrane interior surface (22) is in substantially cell-tight dry sealing engagement with fitting (32) to seal cavity (23). Living cells (24) are disposed in the cavity (23) which are capable of secreting the biologically active product to an individual. The membrane (21) is of a material capable of permitting the passage of substances between the individual and cells required to provide the biological product or function. A plug member (35) is positioned in the access port (34) and seated in cell-tight sealing engagement with the fitting inner surface (33).
    Type: Grant
    Filed: January 30, 1998
    Date of Patent: September 26, 2000
    Assignee: Brown University Research Foundation
    Inventors: John F. Mills, Edward J. Doherty, Tyrone F. Hazlett, Keith E. Dionne, Nicholas F. Warner, Brian M. Cain, David H. Rein
  • Patent number: 5935849
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: July 20, 1994
    Date of Patent: August 10, 1999
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5932460
    Abstract: A sealed, implantable, encapsulation device (20) for diffusing a biologically active product or function to an individual which includes a substantially non-porous fitting (32) including an inner surface (33) defining an access port (34). A permselective, porous, membrane (21), having an interior surface (22), cooperates with the fitting inner surface (33) to form a storage cavity (23) therebetween. The membrane interior surface (22) is in substantially cell-tight dry sealing engagement with fitting (32) to seal cavity (23). Living cells (24) are disposed in the cavity (23) which are capable of secreting the biologically active product to an individual. The membrane (21) is of a material capable of permitting the passage of substances between the individual and cells required to provide the biological product or function. A plug member (35) is positioned in the access port (34) and seated in cell-tight sealing engagement with the fitting inner surface (33).
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: August 3, 1999
    Assignee: Brown University Research Foundation
    Inventors: John F. Mills, Edward J. Doherty, Tyrone F. Hazlett, Keith E. Dionne, Nicholas F. Warner, Brian M. Cain, David H. Rein
  • Patent number: 5858747
    Abstract: Methods and compositions are provided for controlling cell distribution within an implantable bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the bioartificial organ with extracellular matrix molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination. The bioartificial organ typically has a semipermeable membrane encapsulating a cell-containing core, and is preferably immunoisolatory.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: January 12, 1999
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5853717
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: December 29, 1998
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5843431
    Abstract: Methods and compositions are provided for controlling cell distribution within an implantable bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the bioartificial organ with extracellular matrix molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: December 1, 1998
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5840576
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: November 24, 1998
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5833979
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: November 10, 1998
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5795790
    Abstract: Methods and compositions are provided for controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the bioartificial organ with extracellular matrix molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: August 18, 1998
    Assignee: Cytotherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5776747
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination. A particular embodiment is directed to derivatizing or adsorbing polyethylene oxide-poly(dimethylsiloxane) copolymer (PEO-PDMS) onto a surface within the bioartificial organ to inhibit cellular attachment.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: July 7, 1998
    Assignee: Cytotherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5738673
    Abstract: A sealed, implantable, encapsulation device (20) for diffusing a biologically active product or function to an individual which includes a substantially non-porous fitting (32) including an inner surface (33) defining an access port (34). A permselective, porous, membrane (21), having an interior surface (22), cooperates with the fitting inner surface (33) to form a storage cavity (23) therebetween. The membrane interior surface (22) is in substantially cell-tight dry sealing engagement with fitting (32) to seal cavity (23). Living cells (24) are disposed in the cavity (23) which are capable of secreting the biologically active product to an individual. The membrane (21) is of a material capable of permitting the passage of substances between the individual and cells required to provide the biological product or function. A plug member (35) is positioned in the access port (34) and seated in cell-tight sealing engagement with the fitting inner surface (33).
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 14, 1998
    Assignee: Brown University Research Foundation
    Inventors: John F. Mills, Edward J. Doherty, Tyrone F. Hazlett, Keith E. Dionne, Nicholas F. Warner, Brian M. Cain, David H. Rein
  • Patent number: 5713887
    Abstract: A sealed, implantable, encapsulation device (20) for diffusing a biologically active product or function to an individual which includes a substantially non-porous fitting (32) including an inner surface (33) defining an access port (34). A permselective, porous, membrane (21), having an interior surface (22), cooperates with the fitting inner surface (33) to form a storage cavity (23) therebetween. The membrane interior surface (22) is in substantially cell-tight dry sealing engagement with fitting (32) to seal cavity (23). Living cells (24) are disposed in the cavity (23) which are capable of secreting the biologically active product to an individual. The membrane (21) is of a material capable of permitting the passage of substances between the individual and cells required to provide the biological product or function. A plug member (35) is positioned in the access port (34) and seated in cell-tight sealing engagement with the fitting inner surface (33).
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: February 3, 1998
    Assignee: Brown University Research Foundation
    Inventors: John F. Mills, Edward J. Doherty, Tyrone F. Hazlett, Keith E. Dionne, Nicholas F. Warner, Brian M. Cain, David H. Rein
  • Patent number: 5653688
    Abstract: A sealed, implantable, encapsulation device (20) for diffusing a biologically active product or function to an individual which includes a substantially non-porous fitting (32) including an inner surface (33) defining an access port (34). A permselective, porous, membrane (21), having an interior surface (22), cooperates with the fitting inner surface (33) to form a storage cavity (23) therebetween. The membrane interior surface (22) is in substantially cell-tight dry sealing engagement with fitting (32) to seal cavity (23). Living cells (24) are disposed in the cavity (23) which are capable of secreting the biologically active product to an individual. The membrane (21) is of a material capable of permitting the passage of substances between the individual and cells required to provide the biological product or function. A plug member (35) is positioned in the access port (34) and seated in cell-tight sealing engagement with the fitting inner surface (33).
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: August 5, 1997
    Assignee: Brown University Research Foundation
    Inventors: John F. Mills, Edward J. Doherty, Tyrone F. Hazlett, Keith E. Dionne, Nicholas F. Warner, Brian M. Cain, David H. Rein
  • Patent number: 5653687
    Abstract: A sealed, implantable, encapsulation device (20) for diffusing a biologically active product or function to an individual which includes a substantially non-porous fitting (32) including an inner surface (33) defining an access port (34). A permselective, porous, membrane (21), having an interior surface (22), cooperates with the fitting inner surface (33) to form a storage cavity (23) therebetween. The membrane interior surface (22) is in substantially cell-tight dry sealing engagement with fitting (32) to seal cavity (23). Living cells (24) are disposed in the cavity (23) which are capable of secreting the biologically active product to an individual. The membrane (21) is of a material capable of permitting the passage of substances between the individual and cells required to provide the biological product or function. A plug member (35) is positioned in the access port (34) and seated in cell-tight sealing engagement with the fitting inner surface (33).
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: August 5, 1997
    Assignee: Brown University Research Foundation
    Inventors: John F. Mills, Edward J. Doherty, Tyrone F. Hazlett, Keith E. Dionne, Nicholas F. Warner, Brian M. Cain, David H. Rein