Patents by Inventor Brian M. Fitzgerald

Brian M. Fitzgerald has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240134341
    Abstract: The present application relates to systems and methods for obtaining real-time abrasion data. An example computer-implemented method could include receiving, at a computing device, sensor data from one or more sensors. The one or more sensors are disposed in proximity to an abrasive product or a workpiece associated with the abrasive product. The one or more sensors are configured to collect abrasion operational data associated with an abrasive operation involving the abrasive product or the workpiece. The computer-implemented method could further include training, based on the sensor data, a machine learning system to determine product specific information of the abrasive product and/or workpiece specific information. The computer-implemented method could also include providing the trained machine learning system using the computing device.
    Type: Application
    Filed: May 31, 2022
    Publication date: April 25, 2024
    Inventors: Sujatha K. IYENGAR, Rajappa TADEPALLI, Atin ANGRISH, Grace O. OLATILU, Siddarth SRINIVASAN, Kenneth A. SAUCIER, Christopher M. FITZGERALD, Brian P. RUTKIEWICZ, Alfredo Omar BARRAGAN, Robin M. BRIGHT
  • Patent number: 11955207
    Abstract: The disclosure provides systems and methods for data analysis of experimental data. The analysis can include reference data that are not directly generated from the present experiment, which reference data may be values of the experimental parameters that were either provided by a user, computed by the system with input from a user, or computed by the system without using any input from a user. Another example of such reference data may be information about the instrument, such as the calibration method of the instrument.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 9, 2024
    Assignee: Emerald Cloud Lab, Inc.
    Inventors: Alex M. Yoshikawa, Anand V. Sastry, Asuka Ota, Ben C. Kline, Bradley M. Bond, Brian M. Frezza, Cameron R. Lamoureux, Catherine L. Hofler, Cheri Y. Li, Courtney E. Webster, Daniel J. Kleinbaum, George N. Stanley, George W. Fraser, Guillaume Robichaud, Hayley E. Buchman, James R. McKernan, Jonathan K. Leung, Paul R. Zurek, Robert M. Teed, Ruben E. Valas, Sean M. Fitzgerald, Sergio I. Villarreal, Shayna L. Hilburg, Shivani S. Baisiwala, Srikant Vaithilingam, Wyatt J. Woodson, Yang Choo, Yidan Y. Cong
  • Patent number: 10550915
    Abstract: A power transmission assembly includes an input member adapted to receive drive torque from a source of torque, an output member adapted to provide drive torque to an output device and a bi-directional roller clutch including a first ring fixed for rotation with one of the input and output members. A second ring is spaced apart from the other of the input and output members. Rollers are positioned in aligned cam tracks formed in facing surfaces of the first and second rings. Neither the first ring nor the second ring support the input member or the output member on the other. The second ring may circumferentially index relative to the first ring for causing the rollers to ride up the cam tracks and force the second ring to frictionally engage the other of the input and output members, thereby establishing a drive connection between the input and output members.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: February 4, 2020
    Assignee: MAGNA POWERTRAIN OF AMERICA, INC.
    Inventor: Brian M. Fitzgerald
  • Publication number: 20160069429
    Abstract: A power transmission assembly includes an input member adapted to receive drive torque from a source of torque, an output member adapted to provide drive torque to an output device and a bi-directional roller clutch including a first ring fixed for rotation with one of the input and output members. A second ring is spaced apart from the other of the input and output members. Rollers are positioned in aligned cam tracks formed in facing surfaces of the first and second rings. Neither the first ring nor the second ring support the input member or the output member on the other. The second ring may circumferentially index relative to the first ring for causing the rollers to ride up the cam tracks and force the second ring to frictionally engage the other of the input and output members, thereby establishing a drive connection between the input and output members.
    Type: Application
    Filed: November 19, 2015
    Publication date: March 10, 2016
    Inventor: Brian M. Fitzgerald
  • Publication number: 20140174430
    Abstract: A method of calibrating a mirror orientation system of a heliostat includes mounting an artificial light source to a heliostat mirror, providing an array of light sensors on a solar thermal tower and positioning the heliostat mirror at a first orientation. A control module is provided a signal indicative of a mirror drive mechanism position at the first mirror orientation. The control module correlates the signal indicative of the mechanism position with an energy distribution across the sensor array as the artificial light source is energized when the mirror is at the first orientation. The drive mechanism moves the mirror to a second orientation and directs artificial light on the sensor array. The drive mechanism position signal is correlated with an energy distribution across the sensor array based on the second mirror orientation. The heliostat is calibrated based on the energy distributions and the drive mechanism position signals.
    Type: Application
    Filed: November 6, 2013
    Publication date: June 26, 2014
    Inventors: Brian M. Fitzgerald, John D. Zalewski, Peter M. Jacobsen, Franz Faschinger, Richard A. Bakowski, Philipp Ebner, David W. Wenthen, Burke Smith
  • Publication number: 20140174499
    Abstract: A heliostat for reflecting sunlight toward a target includes a first structure supporting a mirror including inner and outer tubes being rotatable relative to one another. A first actuator includes an electric motor driving a reduction gearset to rotate one of the first tubes and rotate the mirror about a first axis. A second structure also includes inner and outer rotatable tubes. A second actuator includes a second electric motor driving a reduction gearset to rotate the mirror about a second axis.
    Type: Application
    Filed: October 23, 2013
    Publication date: June 26, 2014
    Inventors: Brian M. Fitzgerald, John D. Zalewski, Franz Faschinger, Richard A. Bakowski, Philipp Ebner, David W. Wenthen, Burke Smith, Peter M. Jacobsen
  • Patent number: 8316738
    Abstract: A power transmission device for a four-wheel drive vehicle having a power source and first and second drivelines includes an input shaft adapted to be driven by the power source. A first output shaft is rotatable about a first axis and adapted to transmit torque to the first driveline. A second output shaft is adapted to transmit torque to the second driveline and is rotatable about a second axis. The first and second axes do not extend parallel to each other. A transfer unit includes a first cylindrically-shaped gear rotatably supported on the first output shaft and a second conically-shaped gear fixed for rotation with the second output shaft. The first and second gears are in constant meshed engagement with each other.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: November 27, 2012
    Assignee: Magna Powertrain of America, Inc.
    Inventors: William A. Hellinger, John D. Zalewski, David W. Wenthen, Brian M. Fitzgerald
  • Patent number: 8151662
    Abstract: A dual transmission includes a first input shaft, a second input shaft, a first input clutch adapted to drivingly couple a power source to the first input shaft and a second input clutch adapted to drivingly couple the power source to the second input shaft. First, third and fifth drive gears are driven by the first input shaft. Second, fourth and sixth drive gears are driven by the second input shaft. First, second, third, fourth, fifth and sixth driven gears selectively drive a countershaft. The first through sixth drive gears are in meshed engagement with the corresponding first through sixth driven gears. First through sixth synchronizer clutches are individually associated with the respective first through sixth drive or driven gears to provide first through sixth gear drive ratios to the countershaft. Each synchronizer clutch is selectively actuated by an associated first through sixth electric actuator.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: April 10, 2012
    Assignee: Magna Powertrain USA, Inc.
    Inventors: Brian M. Fitzgerald, David W. Wenthen
  • Publication number: 20100313706
    Abstract: A power transmission device for a four-wheel drive vehicle having a power source and first and second drivelines includes an input shaft adapted to be driven by the power source. A first output shaft is rotatable about a first axis and adapted to transmit torque to the first driveline. A second output shaft is adapted to transmit torque to the second driveline and is rotatable about a second axis. The first and second axes do not extend parallel to each other. A transfer unit includes a first cylindrically-shaped gear rotatably supported on the first output shaft and a second conically-shaped gear fixed for rotation with the second output shaft. The first and second gears are in constant meshed engagement with each other.
    Type: Application
    Filed: June 10, 2009
    Publication date: December 16, 2010
    Inventors: William A. Hellinger, John D. Zalewski, David W. Wenthen, Brian M. Fitzgerald
  • Publication number: 20100024582
    Abstract: A power transmission assembly includes an input member adapted to receive drive torque from a source of torque, an output member adapted to provide drive torque to an output device and a bi-directional roller clutch including a first ring fixed for rotation with one of the input and output members. A second ring is spaced apart from the other of the input and output members. Rollers are positioned in aligned cam tracks formed in facing surfaces of the first and second rings. Neither the first ring nor the second ring support the input member or the output member on the other. The second ring may circumferentially index relative to the first ring for causing the rollers to ride up the cam tracks and force the second ring to frictionally engage the other of the input and output members, thereby establishing a drive connection between the input and output members.
    Type: Application
    Filed: July 28, 2009
    Publication date: February 4, 2010
    Inventor: Brian M. FITZGERALD
  • Publication number: 20090241728
    Abstract: A dual transmission includes a first input shaft, a second input shaft, a first input clutch adapted to drivingly couple a power source to the first input shaft and a second input clutch adapted to drivingly couple the power source to the second input shaft. First, third and fifth drive gears are driven by the first input shaft. Second, fourth and sixth drive gears are driven by the second input shaft. First, second, third, fourth, fifth and sixth driven gears selectively drive a countershaft. The first through sixth drive gears are in meshed engagement with the corresponding first through sixth driven gears. First through sixth synchronizer clutches are individually associated with the respective first through sixth drive or driven gears to provide first through sixth gear drive ratios to the countershaft. Each synchronizer clutch is selectively actuated by an associated first through sixth electric actuator.
    Type: Application
    Filed: March 25, 2009
    Publication date: October 1, 2009
    Inventors: Brian M. Fitzgerald, David W. Wenthen
  • Publication number: 20090060672
    Abstract: A gear production apparatus for producing a gear from a blank includes a blank retainer rotatably supporting and selectively driving the blank about a work axis. An axially moveable first stock supports a first tool for rotation about a first axis extending substantially perpendicular to the work axis. An axially moveable second stock supports a second tool for rotation about the second axis. The second tool is moveable in two additional degrees of freedom such that the second axis is rotatable about a third axis and the second tool is axially translatable along the second axis. The second tool is moveable with the second stock along a line extending substantially perpendicular to and intersecting the work axis. The first stock is moveable to engage the first tool with the blank to form rough teeth. The second stock is moveable to engage the second tool with the blank.
    Type: Application
    Filed: July 30, 2008
    Publication date: March 5, 2009
    Inventors: Brian M. Fitzgerald, Jeffrey A. Rynders
  • Patent number: 6862953
    Abstract: A controllable, multi-mode, bi-directional overrunning clutch assembly and a shift system are adapted for use in a power transmission device. The clutch assembly includes a first ring journalled on a first rotary member, a second ring fixed to a second rotary member, and a plurality of rollers disposed in opposed cam tracks formed between the first and second rings. The first ring is split to define an actuation channel having a pair of spaced end segments. An actuator ring is moveable between positions engaged with and released from the end segments of the first ring. The shift system includes a moveable clutch actuator which controls movement of the actuator ring for establishing engaged and disengaged clutch modes. An alternate embodiment clutch assembly includes first and second rings non-rotatably coupled to one another. A third ring is selectively engageable with a rotary component to transfer power thereto.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: March 8, 2005
    Assignee: Magna Drivetrain of America, Inc.
    Inventors: Brian M. Fitzgerald, Douglas W. Conklin
  • Patent number: 6839953
    Abstract: An apparatus is provided for manufacturing a gear component. The apparatus includes a plurality of tooling stocks movable relative to a base. The tooling stocks function to retain a component, as well as operably driving a combination hob/shaver tool and a combination chamfer/debut tool. The apparatus reduces the number of machines required to complete the gear component as well as reducing the cycle time for complete component manufacture. In this way, a more efficient manufacturing system is provided, whereby capital investment and operational costs are reduced.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: January 11, 2005
    Assignee: Magna Drivetrain of America, Inc.
    Inventors: Brian M. Fitzgerald, Jeffrey A. Rynders
  • Publication number: 20040211050
    Abstract: An apparatus is provided for manufacturing a gear component. The apparatus includes a plurality of tooling stocks movable relative to a base. The tooling stocks function to retain a component, as well as operably driving a combination hob/shaver tool and a combination chamfer/debur tool. The apparatus reduces the number of machines required to complete the gear component as well as reducing the cycle time for complete component manufacture. In this way, a more efficient manufacturing system is provided, whereby capital investment and operational costs are reduced.
    Type: Application
    Filed: May 18, 2004
    Publication date: October 28, 2004
    Inventors: Brian M. Fitzgerald, Jeffrey A. Rynders
  • Publication number: 20040168545
    Abstract: A controllable, multi-mode, bi-directional overrunning clutch assembly and a shift system are adapted for use in a power transmission device. The clutch assembly includes a first ring journalled on a first rotary member, a second ring fixed to a second rotary member, and a plurality of rollers disposed in opposed cam tracks formed between the first and second rings. The first ring is split to define an actuation channel having a pair of spaced end segments. An actuator ring is moveable between positions engaged with and released from the end segments of the first ring. The shift system includes a moveable clutch actuator which controls movement of the actuator ring for establishing engaged and disengaged clutch modes. An alternate embodiment clutch assembly includes first and second rings non-rotatably coupled to one another. A third ring is selectively engageable with a rotary component to transfer power thereto.
    Type: Application
    Filed: July 24, 2003
    Publication date: September 2, 2004
    Inventors: Brian M. Fitzgerald, Douglas W. Conklin
  • Patent number: 6757949
    Abstract: An apparatus is provided for manufacturing a gear component. The apparatus includes a plurality of tooling stocks movable relative to a base. The tooling stocks function to retain a component, as well as operably driving a combination hob/shaver tool and a combination chamfer/debur tool. The apparatus reduces the number of machines required to complete the gear component as well as reducing the cycle time for complete component manufacture. In this way, a more efficient manufacturing system is provided, whereby capital investment and operational costs are reduced.
    Type: Grant
    Filed: January 9, 2003
    Date of Patent: July 6, 2004
    Assignee: New Venture Gear, Inc.
    Inventors: Brian M. Fitzgerald, Jeffrey A. Rynders
  • Publication number: 20030210964
    Abstract: An apparatus is provided for manufacturing a gear component. The apparatus includes a plurality of tooling stocks movable relative to a base. The tooling stocks function to retain a component, as well as operably driving a combination hob/shaver tool and a combination chamfer/debur tool. The apparatus reduces the number of machines required to complete the gear component as well as reducing the cycle time for complete component manufacture. In this way, a more efficient manufacturing system is provided, whereby capital investment and operational costs are reduced.
    Type: Application
    Filed: January 9, 2003
    Publication date: November 13, 2003
    Inventors: Brian M. Fitzgerald, Jeffrey A. Rynders
  • Patent number: 5396818
    Abstract: A finish broaching tool for finish cutting helical splines on the interior of an annular workpiece has a multiplicity of groups of circumferentially disposed teeth. Each group of circumferentially disposed teeth is formed on an individual wafer adapted to be mounted on the trailing end of a conventional broaching bar. The teeth of each wafer are formed on a predetermined helical angle and are adapted to helically align with the teeth of the other wafers. The wafers are sized so as to provide contact between the teeth of two or more wafers throughout substantially the entire finish broaching process.
    Type: Grant
    Filed: January 6, 1994
    Date of Patent: March 14, 1995
    Assignee: New Venture Gear, Inc.
    Inventor: Brian M. Fitzgerald
  • Patent number: 5282702
    Abstract: A finish broaching tool for finish cutting helical splines on the interior of an annular workpiece has a multiplicity of groups of circumferentially disposed teeth. Each group of circumferentially disposed teeth is formed on an individual wafer adapted to be mounted on the trailing end of a conventional broaching bar. The teeth of each wafer are formed on a predetermined helical angle and are adapted to helically align with the teeth of the other wafers. The wafers are sized so as to provide contact between the teeth of two or more wafers throughout substantially the entire finish broaching process.
    Type: Grant
    Filed: April 3, 1992
    Date of Patent: February 1, 1994
    Assignee: New Venture Gear, Inc.
    Inventor: Brian M. Fitzgerald