Patents by Inventor Brian M. Pape

Brian M. Pape has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11174048
    Abstract: A satellite has thrusters that are integral parts of its frame. The frame defines cavities therein where thrusters are located. The thrusters may include an electrically-operated propellant and electrodes to activate combustion in the electrically-operated propellant. The frame may be additively manufactured, and the propellant and/or the electrodes may also be additively manufactured, with the frame and the propellant and/or the electrodes also being manufactured in a single process. In addition the thrusters may have nozzle portions through which combustion gases exit the thrusters. The thrusters may be located at corners and/or along edges of the frame, and may be used to accomplish any of a variety of maneuvers for the satellite. The satellite may be a small satellite, such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: November 16, 2021
    Assignee: Raytheon Company
    Inventors: Frederick B. Koehler, Jeremy C. Danforth, Ward D. Lyman, Mark T. Langhenry, Matt H. Summers, Paul E. Pontius, Brian M. Pape, Jared D. Stallings, James K. Villarreal, Thomas Villarreal
  • Publication number: 20200024003
    Abstract: A satellite has thrusters that are integral parts of its frame. The frame defines cavities therein where thrusters are located. The thrusters may include an electrically-operated propellant and electrodes to activate combustion in the electrically-operated propellant. The frame may be additively manufactured, and the propellant and/or the electrodes may also be additively manufactured, with the frame and the propellant and/or the electrodes also being manufactured in a single process. In addition the thrusters may have nozzle portions through which combustion gases exit the thrusters. The thrusters may be located at corners and/or along edges of the frame, and may be used to accomplish any of a variety of maneuvers for the satellite. The satellite may be a small satellite, such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
    Type: Application
    Filed: February 4, 2019
    Publication date: January 23, 2020
    Inventors: Frederick B. Koehler, Jeremy C. Danforth, Ward D. Lyman, Mark T. Langhenry, Matt H. Summers, Paul E. Pontius, Brian M. Pape, Jared D. Stallings, James K. Villarreal, Thomas Villarreal
  • Patent number: 10220966
    Abstract: A satellite has thrusters that are integral parts of its frame. The frame defines cavities therein where thrusters are located. The thrusters may include an electrically-operated propellant and electrodes to activate combustion in the electrically-operated propellant. The frame may be additively manufactured, and the propellant and/or the electrodes may also be additively manufactured, with the frame and the propellant and/or the electrodes also being manufactured in a single process. In addition the thrusters may have nozzle portions through which combustion gases exit the thrusters. The thrusters may be located at corners and/or along edges of the frame, and may be used to accomplish any of a variety of maneuvers for the satellite. The satellite may be a small satellite, such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: March 5, 2019
    Assignee: Raytheon Company
    Inventors: Frederick B. Koehler, Jeremy C. Danforth, Ward D. Lyman, Mark T. Langhenry, Matt H. Summers, Paul E. Pontius, Brian M. Pape, Jared D. Stallings, James K. Villarreal, Thomas Villarreal
  • Publication number: 20170283095
    Abstract: A satellite has thrusters that are integral parts of its frame. The frame defines cavities therein where thrusters are located. The thrusters may include an electrically-operated propellant and electrodes to activate combustion in the electrically-operated propellant. The frame may be additively manufactured, and the propellant and/or the electrodes may also be additively manufactured, with the frame and the propellant and/or the electrodes also being manufactured in a single process. In addition the thrusters may have nozzle portions through which combustion gases exit the thrusters. The thrusters may be located at corners and/or along edges of the frame, and may be used to accomplish any of a variety of maneuvers for the satellite. The satellite may be a small satellite, such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
    Type: Application
    Filed: April 5, 2016
    Publication date: October 5, 2017
    Inventors: Frederick B. Koehler, Jeremy C. Danforth, Ward D. Lyman, Mark T. Langhenry, Matt H. Summers, Paul E. Pontius, Brian M. Pape, Jared D. Stallings, James K. Villarreal, Thomas Villarreal
  • Publication number: 20170284339
    Abstract: A thruster includes multiple segments of electrically-operated propellant, electrodes for igniting one or a few of the electrically-operated propellant segments at a time, and a propellant feeder for moving further propellant segments into engagement with the electrodes. The segments may be configured to provide equal increments of thrust, or different amounts of thrust. The segments may each include an electrically-operated propellant material surrounded by a sealing material, so as to keep the propellant material away from moisture and other contaminants (and/or the vacuum of space) before each individual segment is to be used. The thruster may be included in any of a variety of flight vehicles, for example in a small satellite such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
    Type: Application
    Filed: April 5, 2016
    Publication date: October 5, 2017
    Inventors: Frederick B. Koehler, Jeremy C. Danforth, Ward D. Lyman, Mark T. Langhenry, Matt H. Summers, Paul E. Pontius, Brian M. Pape, Jared D. Stallings, James K. Villarreal, Thomas Villarreal