Patents by Inventor Brian M. Weiss

Brian M. Weiss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11865515
    Abstract: An active material useful in an oxidative dehydrogenation reactor system has an active phase, and a mixed metal oxide support phase. The active phase includes a transition metal oxide such as manganese oxide, which is reversibly oxidizable and/or reducible between oxidized and reduced states. The support phase includes a mixed metal oxide of a two or more IUPAC Group 2-14 elements. The active phase can also include a promoter such as Na-WO4 and/or a selectivity modifier such as Al or ceria. Also, a reactor including the active material in a reactor, a method of making the active material, and a method of using the active material in a regenerative reaction process.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: January 9, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Brian M. Weiss, Sophie Liu, Joseph M. Falkowski, Marc R. Schreier, Herb W. Barry
  • Patent number: 11773335
    Abstract: Systems and methods are provided for using a reverse flow reactor (or another reactor with flows in opposing directions at different parts of a process cycle) for pyrolysis of hydrocarbons. The systems and methods can include a reactor that includes a combustion catalyst to initiate and/or maintain combustion within the reactor in a controlled manner during the heating and/or regeneration portion(s) of the reaction cycle. A fuel can also be used that has a greater resistance to auto-combustion, such as a fuel that is composed primarily of methane and/or other hydrocarbons. During operation, the temperature in at least an initial portion of the reactor can be maintained at a temperature so that auto-ignition of the auto-combustion resistant fuel injected during the heating step(s) is reduced or minimized. This can allow combustion to be initiated when the auto-combustion resistant fuel comes into contact with the catalyst.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: October 3, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Brian M. Weiss, Sophie Liu, Michael R. Harper, Jr., Herbert W. Barry, Changmin Chun, Barrington S. Goldson, Justin R. Johnson, Faria Nusrat
  • Publication number: 20230173463
    Abstract: An active material useful in an oxidative dehydrogenation reactor system has an active phase, and a mixed metal oxide support phase. The active phase includes a transition metal oxide such as manganese oxide, which is reversibly oxidizable and/or reducible between oxidized and reduced states. The support phase includes a mixed metal oxide of a two or more IUPAC Group 2-14 elements. The active phase can also include a promoter such as Na-WO4 and/or a selectivity modifier such as Al or ceria. Also, a reactor including the active material in a reactor, a method of making the active material, and a method of using the active material in a regenerative reaction process.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 8, 2023
    Inventors: Brian M. Weiss, Sopie Liu, Joseph M. Falkowski, Marc R. Schreier, Herb W. Barry
  • Patent number: 11465903
    Abstract: Systems and methods are provided for using oxycombustion to provide heat within a reverse flow reactor environment. The oxygen for the oxycombustion can be provided by oxygen stored in an oxygen storage component in the reactor. By using an oxygen storage component to provide the oxygen for combustion during the regeneration step, heat can be added to a reverse flow reactor while reducing or minimizing addition of diluents and while avoiding the need for an air separation unit. As a result, a regeneration flue gas can be formed that is substantially composed of CO2 and/or H2O without requiring the additional cost of creating a substantially pure oxygen-containing gas flow.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: October 11, 2022
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Everett J. O'Neal, Brian M. Weiss, Anastasios I. Skoulidas
  • Publication number: 20220274085
    Abstract: A reverse flow reactor (RFR) and process having a forward reaction feed cycle, a reverse reaction feed cycle, and a reverse regeneration cycle. The heat convected in the forward feed cycle matches the heat convected in the reverse flow cycles. Compared to an RFR without the reverse feed cycle, the three-cycle RPR substantially reduces the regeneration air flow rate, associated compression requirements, and the overall reactor volume, that are required.
    Type: Application
    Filed: July 30, 2020
    Publication date: September 1, 2022
    Inventors: Brian M. Weiss, Changmin Chun, Sophie Liu, Federico Barrai, Paul F. Keusenkothen, Zachary D. Young
  • Publication number: 20220235282
    Abstract: Systems and methods are provided for using a reverse flow reactor (or another reactor with flows in opposing directions at different parts of a process cycle) for pyrolysis of hydrocarbons. The systems and methods can include a reactor that includes a combustion catalyst to initiate and/or maintain combustion within the reactor in a controlled manner during the heating and/or regeneration portion(s) of the reaction cycle. A fuel can also be used that has a greater resistance to auto-combustion, such as a fuel that is composed primarily of methane and/or other hydrocarbons. During operation, the temperature in at least an initial portion of the reactor can be maintained at a temperature so that auto-ignition of the auto-combustion resistant fuel injected during the heating step(s) is reduced or minimized. This can allow combustion to be initiated when the auto-combustion resistant fuel comes into contact with the catalyst.
    Type: Application
    Filed: December 7, 2021
    Publication date: July 28, 2022
    Inventors: Brian M. Weiss, Sophie Liu, Michael R. Harper, JR., Herbert W. Barry, Changmin Chun, Barrington S. Goldson, Justin R. Johnson, Faria Nusrat
  • Patent number: 11396450
    Abstract: Sulfur-tolerant reforming catalysts that include bulk alumina in the catalyst support are provided. The sulfur-tolerant reforming catalysts can include a sulfur-tolerant catalytic metal to facilitate reforming. The catalyst can further include a support material that includes at least some alumina as bulk alumina and/or octahedrally coordinated alumina. The sulfur-tolerant reforming catalysts can be regenerated, such as periodically regenerated, under relatively mild conditions that allow the catalysts to maintain reforming activity in the presence of 1 vppm to 1000 vppm of sulfur in the feed for reforming.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: July 26, 2022
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Brian M. Weiss, Tilman W. Beutel, Herbert W. Barry, Gerardo J. Majano Sanchez, John F. Brody, Walter Weissman, Kanmi Mao
  • Publication number: 20220143586
    Abstract: The present disclosure provides mesoporous catalyst compounds and compositions having one or more group 13 atoms. The present disclosure further relates to processes for converting hydrocarbon feedstocks to small olefins. In one aspect, a catalyst compound includes a zeolite having a structural type selected from MFI, MSE, MTW, Theta-One (TON), Ferrierite (FER), AFI, AFS, ATO, BEA, BEC, BOG, BPH, CAN, CON, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, ITN, IWR, IWW, LTL, MAZ, MEI, MOR, MOZ, OFF, OKO, OSI, SAF, SAO, SEW, SFE, SFO, SSF, SSY, and USI, or a combination thereof, the zeolite having a silicon to aluminum molar ratio (Si/Al ratio) of from about 5 to about 40. In one aspect, a catalyst composition includes the catalyst compound and one or more group 13 metal.
    Type: Application
    Filed: January 22, 2020
    Publication date: May 12, 2022
    Inventors: Tilman W. Beutel, Gerardo J. Majano Sanchez, Walter Weissman, Brian M. Weiss, Himanshu Gupta, John F. Brody, Scott J. Weigel
  • Patent number: 11136279
    Abstract: This application relates to transfer hydrogenation between light alkanes and olefins, and, more particularly, embodiments related to an integrated olefin production system and process which can produce higher carbon number olefins from corresponding alkanes. Examples methods may include reacting at least a portion of the ethylene and the at least one alkane via transfer hydrogenation to produce at least a mixed product stream comprising generated ethane from at least a portion of the ethylene, unreacted ethylene, and an olefin corresponding to the at least one alkane.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: October 5, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Aaron Sattler, Michele Paccagnini, Kun Wang, Henry K. Klutse, Brian M. Weiss
  • Patent number: 11015131
    Abstract: A system and methods for manufacturing a base oil stock from a light hydrocarbon stream are provided. An example method includes cracking a light hydrocarbon stream to form an impure olefinic stream, separating water from the impure olefinic stream, and oligomerizing the impure olefinic stream to form a raw oligomer stream. A light olefinic stream from the raw oligomer stream and linear alpha olefins are recovered from the light olefinic stream. A heavy olefinic stream is distilled from the raw oligomer stream and hydro-processed to form a hydro-processed stream. They hydro-processed stream is distilled to form the base oil stock.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: May 25, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Matthew S. Ide, Suzzy C. Ho, Guang Cao, Brian M. Weiss, Sara L. Yohe
  • Publication number: 20210087122
    Abstract: This application relates to transfer hydrogenation between light alkanes and olefins, and, more particularly, embodiments related to an integrated olefin production system and process which can produce higher carbon number olefins from corresponding alkanes. Examples methods may include reacting at least a portion of the ethylene and the at least one alkane via transfer hydrogenation to produce at least a mixed product stream comprising generated ethane from at least a portion of the ethylene, unreacted ethylene, and an olefin corresponding to the at least one alkane.
    Type: Application
    Filed: July 22, 2020
    Publication date: March 25, 2021
    Inventors: Aaron Sattler, Michele Paccagnini, Kun Wang, Henry K. Klutse, Brian M. Weiss
  • Publication number: 20210047181
    Abstract: Systems and methods are provided for using oxycombustion to provide heat within a reverse flow reactor environment. The oxygen for the oxycombustion can be provided by oxygen stored in an oxygen storage component in the reactor. By using an oxygen storage component to provide the oxygen for combustion during the regeneration step, heat can be added to a reverse flow reactor while reducing or minimizing addition of diluents and while avoiding the need for an air separation unit. As a result, a regeneration flue gas can be formed that is substantially composed of CO2 and/or H2O without requiring the additional cost of creating a substantially pure oxygen-containing gas flow.
    Type: Application
    Filed: April 2, 2020
    Publication date: February 18, 2021
    Inventors: Everett J. O'Neal, Brian M. Weiss, Anastasios I. Skoulidas
  • Patent number: 10858600
    Abstract: Systems and a method for manufacturing a base stock from a light gas stream are provided. An example method includes oxidizing the light gas stream to form a raw ethylene stream. Water is removed from the raw ethylene stream, and carbon monoxide in the raw ethylene stream is oxidized. Carbon dioxide is separated from the raw ethylene stream, and the raw ethylene stream is oligomerized to form a raw oligomer stream. A light olefinic stream is distilled from the raw oligomer stream and a light alpha olefin is recovered from the light olefinic stream. A heavy olefinic stream is distilled from the raw oligomer stream. The heavy olefinic stream is hydro-processed to form a hydro-processed stream. the hydro-processed stream is distilled to form the base stock.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: December 8, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Guang Cao, Jihad M. Dakka, Suzzy C. Ho, Brian M. Weiss
  • Patent number: 10836965
    Abstract: Methods of transforming a hydrocarbon feedstream into an aromatization product in a multi-stage reverse flow reactor (RFR) apparatus are disclosed. The methods include at least two reaction stages in series, at least one being a pyrolysis stage and at least another being a catalytic aromatization stage. Using a highly saturated hydrocarbon feedstream the pyrolysis stage focuses on desaturation, while the catalytic aromatization stage focuses on aromatization. The catalytic aromatization stage contains a aromatization catalyst that can include substantially no magnesium, scandium, yttrium, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, rhenium, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, copper, silver, gold, gallium, indium, tin, lanthanides, or actinides, or, in some cases, substantially no added active metals at all.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: November 17, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mayank Shekhar, James R. Lattner, Federico Barrai, Brian M. Weiss, Dhaval A. Bhandari, Joshua W. Allen
  • Patent number: 10717069
    Abstract: Zn-promoted and/or Ga-promoted cracking catalysts, such as cracking catalysts comprising an MSE framework zeolite or an MFI framework zeolite can provide unexpectedly superior conversion of branched paraffins when used as part of a catalyst during reforming of a hydrocarbon fuel stream. The conversion and reforming of the hydrocarbon fuel stream can occur, for example, in an internal combustion engine. The conversion and reforming can allow for formation of higher octane compounds from the branched paraffins.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: July 21, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Brian M. Weiss, Gerardo J. Majano, Tilman W. Beutel, Karl G. Strohmaier, John F. Brody, Samia Ilias, Scott J. Weigel, Shamel Merchant, Eugine Choi, Robert J. Colby, Walter Weissman
  • Patent number: 10711203
    Abstract: The invention relates to hydrocarbon pyrolysis, to equipment and materials useful for hydrocarbon pyrolysis, to processes for carrying out hydrocarbon pyrolysis, and to the use of hydrocarbon pyrolysis for, e.g., hydrocarbon gas upgrading. The pyrolysis is carried out in a reactor which includes at least one thermal mass having an open frontal area ?55%.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: July 14, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Federico Barrai, Elizabeth G. Mahoney, John S. Coleman, Dhaval A. Bhandari, Brian M. Weiss, Changmin Chun, Frank Hershkowitz
  • Patent number: 10662130
    Abstract: This disclosure relates to processes, compositions, and systems useful for the oxydehydrogenation of alkanes to form olefins (e.g., for the conversion of ethane to ethylene). The processes use an oxygen transfer agent and may be carried out in any suitable reactor, including a reverse flow reactor, a circulating fluid bed reactor, or a cyclic co-flow reactor.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: May 26, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Brian M. Weiss, ChangMin Chun, Dhaval A. Bhandari, Federico Barrai, Sophie Liu
  • Publication number: 20200063045
    Abstract: Systems and a method for manufacturing a base stock from a light gas stream are provided. An example method includes oxidizing the light gas stream to form a raw ethylene stream. Water is removed from the raw ethylene stream, and carbon monoxide in the raw ethylene stream is oxidized. Carbon dioxide is separated from the raw ethylene stream, and the raw ethylene stream is oligomerized to form a raw oligomer stream. A light olefinic stream is distilled from the raw oligomer stream and a light alpha olefin is recovered from the light olefinic stream. A heavy olefinic stream is distilled from the raw oligomer stream. The heavy olefinic stream is hydro-processed to form a hydro-processed stream. the hydro-processed stream is distilled to form the base stock.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 27, 2020
    Inventors: Guang Cao, Jihad M. Dakka, Suzzy C. Ho, Brian M. Weiss
  • Publication number: 20200063043
    Abstract: A system and methods for manufacturing a base oil stock from a light hydrocarbon stream are provided. An example method includes cracking a light hydrocarbon stream to form an impure olefinic stream, separating water from the impure olefinic stream, and oligomerizing the impure olefinic stream to form a raw oligomer stream. A light olefinic stream from the raw oligomer stream and linear alpha olefins are recovered from the light olefinic stream. A heavy olefinic stream is distilled from the raw oligomer stream and hydro-processed to form a hydro-processed stream. They hydro-processed stream is distilled to form the base oil stock.
    Type: Application
    Filed: August 15, 2019
    Publication date: February 27, 2020
    Inventors: Matthew S. Ide, Suzzy C. Ho, Guang Cao, Brian M. Weiss, Sara L. Yohe
  • Publication number: 20200024524
    Abstract: The invention relates to hydrocarbon pyrolysis, to equipment and materials useful for hydrocarbon pyrolysis, to processes for carrying out hydrocarbon pyrolysis, and to the use of hydrocarbon pyrolysis for, e.g., hydrocarbon gas upgrading. The pyrolysis is carried out in a reactor which includes at least one thermal mass having an open frontal area ?55%.
    Type: Application
    Filed: August 15, 2017
    Publication date: January 23, 2020
    Inventors: Federico Barrai, Elizabeth G. Mahoney, John S. Coleman, Dhaval A. Bhandari, Brian M. Weiss, Changmin Chun, Frank Hershkowitz