Patents by Inventor Brian McCall

Brian McCall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11948300
    Abstract: Machine learning systems and methods are disclosed for prediction of wound healing, such as for diabetic foot ulcers or other wounds, and for assessment implementations such as segmentation of images into wound regions and non-wound regions. Systems for assessing or predicting wound healing can include a light detection element configured to collect light of at least a first wavelength reflected from a tissue region including a wound, and one or more processors configured to generate an image based on a signal from the light detection element having pixels depicting the tissue region, determine reflectance intensity values for at least a subset of the pixels, determine one or more quantitative features of the subset of the plurality of pixels based on the reflectance intensity values, and generate a predicted or assessed healing parameter associated with the wound over a predetermined time interval.
    Type: Grant
    Filed: March 2, 2023
    Date of Patent: April 2, 2024
    Assignee: Spectral MD, Inc.
    Inventors: Wensheng Fan, John Michael DiMaio, Jeffrey E. Thatcher, Peiran Quan, Faliu Yi, Kevin Plant, Ronald Baxter, Brian McCall, Zhicun Gao, Jason Dwight
  • Publication number: 20240107162
    Abstract: A method for image enhancement includes capturing multiple input images of a scene, including at least a first input image having a first field of view (FOV) captured with a first focal depth and a second input image having a second FOV captured with a second focal depth. The input images in the sequence are preprocessed so as to align the images. The aligned images are processed in a neural network, which generates an output image having an extended depth of field encompassing at least the first and second focal depths.
    Type: Application
    Filed: July 6, 2023
    Publication date: March 28, 2024
    Inventors: Dan C. Lelescu, Rohit Rajiv Ranade, Noah Bedard, Brian McCall, Kathrin Berkner Cieslicki, Michael W. Tao, Robert K. Molholm, Toke Jansen, Vladimir Krneta
  • Publication number: 20240089569
    Abstract: An image sensing device includes a detector assembly, which includes a matrix of optical sensing elements having a predefined pitch. Each optical sensing element includes an active area having a width that is less than 90% of the pitch. An array of optical apertures are respectively aligned with the optical sensing elements such that each optical aperture is positioned at a distance from a respective optical sensing element that is no less than twice the width of the active area. Objective optics are configured to focus light from a scene onto the detector assembly.
    Type: Application
    Filed: April 19, 2023
    Publication date: March 14, 2024
    Inventors: Roei Remez, Brian McCall, Milan Maksimovic, Maoz Ovadia, Arnaud Laflaquière, Gershon Rosenblum, Noah D. Bedard, Omer Korech, Emanuel Mordechai, Keith Lyon, Refael Della Pergola, Niv Gilboa
  • Publication number: 20230222654
    Abstract: Machine learning systems and methods are disclosed for prediction of wound healing, such as for diabetic foot ulcers or other wounds, and for assessment implementations such as segmentation of images into wound regions and non-wound regions. Systems for assessing or predicting wound healing can include a light detection element configured to collect light of at least a first wavelength reflected from a tissue region including a wound, and one or more processors configured to generate an image based on a signal from the light detection element having pixels depicting the tissue region, determine reflectance intensity values for at least a subset of the pixels, determine one or more quantitative features of the subset of the plurality of pixels based on the reflectance intensity values, and generate a predicted or assessed healing parameter associated with the wound over a predetermined time interval.
    Type: Application
    Filed: March 2, 2023
    Publication date: July 13, 2023
    Inventors: Wensheng Fan, John Michael DiMaio, Jeffrey E. Thatcher, Peiran Quan, Faliu Yi, Kevin Plant, Ronald Baxter, Brian McCall, Zhicun Gao, Jason Dwight
  • Publication number: 20230206413
    Abstract: Generally described, one or more aspects of the present application correspond to systems and techniques for spectral imaging using a multi-aperture system with curved multi-bandpass filters positioned over each aperture. The present disclosure further relates to techniques for implementing spectral unmixing and image registration to generate a spectral datacube using image information received from such imaging systems. Aspects of the present disclosure relate to using such a datacube to analyze the imaged object, for example to analyze tissue in a clinical setting, perform biometric recognition, or perform materials analysis.
    Type: Application
    Filed: March 6, 2023
    Publication date: June 29, 2023
    Inventors: Brian McCall, Wensheng Fan, Jason Dwight, Zhicun Gao, Jeffrey E. Thatcher, John Michael DiMaio
  • Patent number: 11631164
    Abstract: Generally described, one or more aspects of the present application correspond to systems and techniques for spectral imaging using a multi-aperture system with curved multi-bandpass filters positioned over each aperture. The present disclosure further relates to techniques for implementing spectral unmixing and image registration to generate a spectral datacube using image information received from such imaging systems. Aspects of the present disclosure relate to using such a datacube to analyze the imaged object, for example to analyze tissue in a clinical setting, perform biometric recognition, or perform materials analysis.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: April 18, 2023
    Assignee: SPECTRAL MD, INC.
    Inventors: Brian McCall, Wensheng Fan, Jason Dwight, Zhicun Gao, Jeffrey E. Thatcher, John Michael DiMaio
  • Patent number: 11599998
    Abstract: Machine learning systems and methods are disclosed for prediction of wound healing, such as for diabetic foot ulcers or other wounds, and for assessment implementations such as segmentation of images into wound regions and non-wound regions. Systems for assessing or predicting wound healing can include a light detection element configured to collect light of at least a first wavelength reflected from a tissue region including a wound, and one or more processors configured to generate an image based on a signal from the light detection element having pixels depicting the tissue region, determine reflectance intensity values for at least a subset of the pixels, determine one or more quantitative features of the subset of the plurality of pixels based on the reflectance intensity values, and generate a predicted or assessed healing parameter associated with the wound over a predetermined time interval.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: March 7, 2023
    Assignee: SPECTRAL MD, INC.
    Inventors: Wensheng Fan, John Michael DiMaio, Jeffrey E. Thatcher, Peiran Quan, Faliu Yi, Kevin Plant, Ronald Baxter, Brian McCall, Zhicun Gao, Jason Dwight
  • Publication number: 20220156903
    Abstract: Generally described, one or more aspects of the present application correspond to systems and techniques for spectral imaging using a multi-aperture system with curved multi-bandpass filters positioned over each aperture. The present disclosure further relates to techniques for implementing spectral unmixing and image registration to generate a spectral datacube using image information received from such imaging systems. Aspects of the present disclosure relate to using such a datacube to analyze the imaged object, for example to analyze tissue in a clinical setting, perform biometric recognition, or perform materials analysis.
    Type: Application
    Filed: November 19, 2021
    Publication date: May 19, 2022
    Inventors: Brian McCall, Wensheng Fan, Jason Dwight, Zhicun Gao, Jeffrey E. Thatcher, John Michael DiMaio
  • Patent number: 11182888
    Abstract: Generally described, one or more aspects of the present application correspond to systems and techniques for spectral imaging using a multi-aperture system with curved multi-bandpass filters positioned over each aperture. The present disclosure further relates to techniques for implementing spectral unmixing and image registration to generate a spectral datacube using image information received from such imaging systems. Aspects of the present disclosure relate to using such a datacube to analyze the imaged object, for example to analyze tissue in a clinical setting, perform biometric recognition, or perform materials analysis.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: November 23, 2021
    Assignee: SPECTRAL MD, INC.
    Inventors: Brian McCall, Wensheng Fan, Jason Dwight, Zhicun Gao, Jeffrey E. Thatcher, John Michael DiMaio
  • Publication number: 20210201479
    Abstract: Machine learning systems and methods are disclosed for prediction of wound healing, such as for diabetic foot ulcers or other wounds, and for assessment implementations such as segmentation of images into wound regions and non-wound regions. Systems for assessing or predicting wound healing can include a light detection element configured to collect light of at least a first wavelength reflected from a tissue region including a wound, and one or more processors configured to generate an image based on a signal from the light detection element having pixels depicting the tissue region, determine reflectance intensity values for at least a subset of the pixels, determine one or more quantitative features of the subset of the plurality of pixels based on the reflectance intensity values, and generate a predicted or assessed healing parameter associated with the wound over a predetermined time interval.
    Type: Application
    Filed: September 4, 2020
    Publication date: July 1, 2021
    Inventors: Wensheng Fan, John Michael DiMaio, Jeffrey E. Thatcher, Peiran Quan, Faliu Yi, Kevin Plant, Ronald Baxter, Brian McCall, Zhicun Gao, Jason Dwight
  • Publication number: 20210082094
    Abstract: Generally described, one or more aspects of the present application correspond to systems and techniques for spectral imaging using a multi-aperture system with curved multi-bandpass filters positioned over each aperture. The present disclosure further relates to techniques for implementing spectral unmixing and image registration to generate a spectral datacube using image information received from such imaging systems. Aspects of the present disclosure relate to using such a datacube to analyze the imaged object, for example to analyze tissue in a clinical setting, perform biometric recognition, or perform materials analysis.
    Type: Application
    Filed: August 7, 2020
    Publication date: March 18, 2021
    Inventors: Brian McCall, Wensheng Fan, Jason Dwight, Zhicun Gao, Jeffrey E. Thatcher, John Michael DiMaio
  • Patent number: 10783632
    Abstract: Machine learning systems and methods are disclosed for prediction of wound healing, such as for diabetic foot ulcers or other wounds, and for assessment implementations such as segmentation of images into wound regions and non-wound regions. Systems for assessing or predicting wound healing can include a light detection element configured to collect light of at least a first wavelength reflected from a tissue region including a wound, and one or more processors configured to generate an image based on a signal from the light detection element having pixels depicting the tissue region, determine reflectance intensity values for at least a subset of the pixels, determine one or more quantitative features of the subset of the plurality of pixels based on the reflectance intensity values, and generate a predicted or assessed healing parameter associated with the wound over a predetermined time interval.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: September 22, 2020
    Assignee: SPECTRAL MD, INC.
    Inventors: Wensheng Fan, John Michael DiMaio, Jeffrey E. Thatcher, Peiran Quan, Faliu Yi, Kevin Plant, Ronald Baxter, Brian McCall, Zhicun Gao, Jason Dwight
  • Patent number: 10740884
    Abstract: Generally described, one or more aspects of the present application correspond to systems and techniques for spectral imaging using a multi-aperture system with curved multi-bandpass filters positioned over each aperture. The present disclosure further relates to techniques for implementing spectral unmixing and image registration to generate a spectral datacube using image information received from such imaging systems. Aspects of the present disclosure relate to using such a datacube to analyze the imaged object, for example to analyze tissue in a clinical setting, perform biometric recognition, or perform materials analysis.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: August 11, 2020
    Assignee: SPECTRAL MD, INC.
    Inventors: Brian McCall, Wensheng Fan, Jason Dwight, Zhicun Gao, Jeffrey E. Thatcher, John Michael DiMaio
  • Publication number: 20200193580
    Abstract: Generally described, one or more aspects of the present application correspond to systems and techniques for spectral imaging using a multi-aperture system with curved multi-bandpass filters positioned over each aperture. The present disclosure further relates to techniques for implementing spectral unmixing and image registration to generate a spectral datacube using image information received from such imaging systems. Aspects of the present disclosure relate to using such a datacube to analyze the imaged object, for example to analyze tissue in a clinical setting, perform biometric recognition, or perform materials analysis.
    Type: Application
    Filed: January 9, 2020
    Publication date: June 18, 2020
    Inventors: Brian McCall, Wensheng Fan, Jason Dwight, Zhicun Gao, Jeffrey E. Thatcher, John Michael DiMaio
  • Publication number: 20200193597
    Abstract: Machine learning systems and methods are disclosed for prediction of wound healing, such as for diabetic foot ulcers or other wounds, and for assessment implementations such as segmentation of images into wound regions and non-wound regions. Systems for assessing or predicting wound healing can include a light detection element configured to collect light of at least a first wavelength reflected from a tissue region including a wound, and one or more processors configured to generate an image based on a signal from the light detection element having pixels depicting the tissue region, determine reflectance intensity values for at least a subset of the pixels, determine one or more quantitative features of the subset of the plurality of pixels based on the reflectance intensity values, and generate a predicted or assessed healing parameter associated with the wound over a predetermined time interval.
    Type: Application
    Filed: January 9, 2020
    Publication date: June 18, 2020
    Inventors: Wensheng Fan, John Michael DiMaio, Jeffrey E. Thatcher, Peiran Quan, Faliu Yi, Kevin Plant, Ronald Baxter, Brian McCall, Zhicun Gao, Jason Dwight
  • Patent number: 8496451
    Abstract: A diaphragm assembly for a fluid driven diaphragm pump includes a piston having an inflexible core. This core includes a hub with a plate extending radially from about the periphery of the hub. The piston further includes a unitary diaphragm body molded with the inflexible core in situ. The unitary diaphragm body has a plurality of connective tendons extending through the plate. A thermoplastic coating extends about the inflexible core between the core and the molded unitary diaphragm body having a thermally miscible surface with the thermoplastic coating. An inflexible backing plate extends in juxtaposition with the diaphragm.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: July 30, 2013
    Assignee: Wilden Pump and Engineering LLC
    Inventors: Nathan Earl Hale, David Brian McCall, Wallace Christian Wiitkoff, Robert Foster Jack
  • Publication number: 20110311379
    Abstract: A diaphragm assembly designed for employment in a fluid driven diaphragm pump includes a piston having an inflexible core. This core includes a hub with a plate extending radially from about the periphery of the hub and a center attachment concentrically arranged in the hub and accessible from a first end of the hub. The plate defines the inflexibility of the piston. The piston further includes a unitary diaphragm body molded with the inflexible core in situ. A peripheral convolute portion outwardly of the piston is integrally molded with the unitary diaphragm body. The unitary diaphragm body has a plurality of connective tendons extending through the plate. A thermoplastic coating extends about the inflexible core between the core and the molded unitary diaphragm body. The unitary diaphragm body is of thermoplastic elastomer having at least a thermally miscible surface with the thermoplastic coating.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 22, 2011
    Inventors: NATHAN EARL HALE, David Brian McCall, Wallace Christian Wiitkoff, Robert Foster Jack