Patents by Inventor Brian Merritt

Brian Merritt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11969332
    Abstract: Systems and methods for the intravascular treatment of clot material within a blood vessel of a human patient are disclosed herein. A method in accordance with embodiments of the present technology can include, for example, positioning a distal portion of a catheter proximate to the clot material within the blood vessel. The method can further include coupling a pressure source to the catheter via a tubing subsystem including a valve or other fluid control device and, while the valve is closed, activating the pressure source to charge a vacuum. The valve can then be opened to apply the vacuum to the catheter to thereby aspirate at least a portion of the clot material from the blood vessel and into the catheter.
    Type: Grant
    Filed: April 4, 2023
    Date of Patent: April 30, 2024
    Assignee: Inari Medical, Inc.
    Inventors: Ben Merritt, Jacqueline Macias, Brian Michael Strauss, Thomas Tu
  • Patent number: 11969331
    Abstract: Systems and methods for the intravascular treatment of clot material within a blood vessel of a human patient are disclosed herein. A method in accordance with embodiments of the present technology can include, for example, positioning a distal portion of a catheter proximate to the clot material within the blood vessel. The method can further include coupling a pressure source to the catheter via a tubing subsystem including a valve or other fluid control device and, while the valve is closed, activating the pressure source to charge a vacuum. The valve can then be opened to apply the vacuum to the catheter to thereby aspirate at least a portion of the clot material from the blood vessel and into the catheter.
    Type: Grant
    Filed: October 28, 2022
    Date of Patent: April 30, 2024
    Assignee: Inari Medical, Inc.
    Inventors: Ben Merritt, Jacqueline Macias, Brian Michael Strauss, Thomas Tu, John Coleman Thress, Paul Lubock
  • Patent number: 11969333
    Abstract: Systems and methods for the intravascular treatment of clot material within a blood vessel of a human patient are disclosed herein. A method in accordance with embodiments of the present technology can include, for example, positioning a distal portion of a catheter proximate to the clot material within the blood vessel. The method can further include coupling a pressure source to the catheter via a tubing subsystem including a valve or other fluid control device and, while the valve is closed, activating the pressure source to charge a vacuum. The valve can then be opened to apply the vacuum to the catheter to thereby aspirate at least a portion of the clot material from the blood vessel and into the catheter.
    Type: Grant
    Filed: June 5, 2023
    Date of Patent: April 30, 2024
    Assignee: Inari Medical, Inc.
    Inventors: Ben Merritt, Jacqueline Macias, Brian Michael Strauss, Thomas Tu, John Coleman Thress, Paul Lubock
  • Publication number: 20210275184
    Abstract: Devices and methods for treatment of a patient's vasculature are described. The device includes a self-expanding resilient permeable shell having a radially constrained state and an expanded state with a globular, axially shortened configuration. The permeable shell may be a single layer of braided elongate filaments having first and second ends that are secured at the proximal end of the permeable shell. The devices may also include permeable shells made of woven braided mesh having a variable mesh density, i.e., the average size of pores in one region are a different than the average size of pores in another region. Methods of using the device to treat a cerebral aneurysm are also described. Methods of forming a tubular braid are also described. Methods of forming a tubular braid with variable braid densities are described. Methods of forming a tubular braid using a castellated mandrel are also described.
    Type: Application
    Filed: February 16, 2021
    Publication date: September 9, 2021
    Inventors: Todd Hewitt, Brian Merritt, William R. Patterson, James M. Thompson, Claudio Plaza, Hung P. Tran, Richard L. Quick
  • Publication number: 20210237127
    Abstract: An apparatus for self-cleaning of a component in a machine, which includes at least one air nozzle disposed in air discharge communication with a surface of the component to be cleaned, such as a sensor surface or a gripper surface. The air nozzle is in air flow communication with air exhaust from an air cylinder of the component or a second component of the machine. Related, corresponding, or associated methods for self-cleaning the component in a machine are also disclosed.
    Type: Application
    Filed: April 20, 2021
    Publication date: August 5, 2021
    Applicant: ILLINOIS TOOL WORKS INC.
    Inventors: Brian Merritt, Brett Stripe, Charles Bryan Shiflet, Robert C. Beesley, J. Mark Nunn
  • Patent number: 10939914
    Abstract: Devices and methods for treatment of a patient's vasculature are described. The device includes a self-expanding resilient permeable shell having a radially constrained state and an expanded state with a globular, axially shortened configuration. The permeable shell may be a single layer of braided elongate filaments having first and second ends that are secured at the proximal end of the permeable shell. The devices may also include permeable shells made of woven braided mesh having a variable mesh density, i.e., the average size of pores in one region are a different than the average size of pores in another region. Methods of using the device to treat a cerebral aneurysm are also described. Methods of forming a tubular braid are also described. Methods of forming a tubular braid with variable braid densities are described. Methods of forming a tubular braid using a castellated mandrel are also described.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: March 9, 2021
    Assignee: SEQUENT MEDICAL, INC.
    Inventors: Todd Hewitt, Brian Merritt, William R. Patterson, James M. Thompson, Claudio Plaza, Hung P. Tran, Richard L Quick
  • Publication number: 20180206849
    Abstract: Devices and methods for treatment of a patient's vasculature are described. The device includes a self-expanding resilient permeable shell having a radially constrained state and an expanded state with a globular, axially shortened configuration. The permeable shell may be a single layer of braided elongate filaments having first and second ends that are secured at the proximal end of the permeable shell. The devices may also include permeable shells made of woven braided mesh having a variable mesh density, i.e., the average size of pores in one region are a different than the average size of pores in another region. Methods of using the device to treat a cerebral aneurysm are also described. Methods of forming a tubular braid are also described. Methods of forming a tubular braid with variable braid densities are described. Methods of forming a tubular braid using a castellated mandrel are also described.
    Type: Application
    Filed: March 23, 2018
    Publication date: July 26, 2018
    Applicant: SEQUENT MEDICAL, INC.
    Inventors: Todd Hewitt, Brian Merritt, William R. Patterson, James M. Thompson, Claudio Plaza, Hung P. Tran, Richard L. Quick
  • Patent number: 9955976
    Abstract: Devices and methods for treatment of a patient's vasculature are described. The devices include implants made of woven braided mesh having a variable mesh density, i.e., the average size of pores in one region are a different than the average size of pores in another region. Additionally, there is a transition zone between the two regions. The implants have a low profile radially constrained state and an expanded state that is axially shortened. Methods of using the device to treat a cerebral aneurysm are also described. Methods of forming a tubular braid are also described. Methods of forming a tubular braid with variable braid densities are described. Methods of forming a tubular braid using a castellated mandrel are also described.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: May 1, 2018
    Assignee: Sequent Medical, Inc.
    Inventors: Todd J Hewitt, Brian Merritt, William R Patterson, James M Thompson, Claudio Plaza, Hung P Tran
  • Patent number: 9629635
    Abstract: Methods and devices for removing a thrombus are described. The device includes an expandable cylindrical structure made of wires and a self-expanding permeable shell located at the distal end of the cylindrical structure. Methods and devices for treating a cerebral aneurysm are described. The device may include a distal self-expanding resilient permeable shell, a proximal self-expanding resilient permeable shell, and an elongate support member positioned between the distal and proximal permeable shells. The elongate support member may be rigid or may be a coil, such as an extension spring. The distal and proximal permeable shells may be made from a plurality of braided filaments, the shells having different pore sizes. The device may also be a braided implant with a force biasing component, such as a coil or generally circular extension, attached to its distal end.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: April 25, 2017
    Assignee: Sequent Medical, Inc.
    Inventors: Todd J Hewitt, Brian Merritt, William R Patterson, James M Thompson, Claudio Plaza, Hung P Tran
  • Publication number: 20160367260
    Abstract: Methods and devices for removing a thrombus are described. The device includes an expandable cylindrical structure made of wires and a self-expanding permeable shell located at the distal end of the cylindrical structure. Methods and devices for treating a cerebral aneurysm are described. The device may include a distal self-expanding resilient permeable shell, a proximal self-expanding resilient permeable shell, and an elongate support member positioned between the distal and proximal permeable shells. The elongate support member may be rigid or may be a coil, such as an extension spring. The distal and proximal permeable shells may be made from a plurality of braided filaments, the shells having different pore sizes. The device may also be a braided implant with a force biasing component, such as a coil or generally circular extension, attached to its distal end.
    Type: Application
    Filed: April 10, 2015
    Publication date: December 22, 2016
    Applicant: SEQUENT MEDICAL, INC.
    Inventors: TODD HEWITT, Brian Merritt, William R. Patterson, James M. Thompson, Claudio Plaza, Hung P. Tran
  • Publication number: 20160249935
    Abstract: Methods and devices for removing a thrombus are described. The device includes an expandable cylindrical structure made of wires and a self-expanding permeable shell located at the distal end of the cylindrical structure. Methods and devices for treating a cerebral aneurysm are described. The device may include a distal self-expanding resilient permeable shell, a proximal self-expanding resilient permeable shell, and an elongate support member positioned between the distal and proximal permeable shells. The elongate support member may be rigid or may be a coil, such as an extension spring. The distal and proximal permeable shells may be made from a plurality of braided filaments, the shells having different pore sizes. The device may also be a braided implant with a force biasing component, such as a coil or generally circular extension, attached to its distal end.
    Type: Application
    Filed: April 10, 2015
    Publication date: September 1, 2016
    Applicant: SEQUENT MEDICAL, INC.
    Inventors: TODD HEWITT, Brian Merritt, William R. Patterson, James M. Thompson, Claudio Plaza, Hung P. Tran
  • Publication number: 20160249934
    Abstract: Devices and methods for treatment of a patient's vasculature are described. The devices include implants made of woven braided mesh having a variable mesh density, i.e., the average size of pores in one region are a different than the average size of pores in another region. Additionally, there is a transition zone between the two regions. The implants have a low profile radially constrained state and an expanded state that is axially shortened. Methods of using the device to treat a cerebral aneurysm are also described. Methods of forming a tubular braid are also described. Methods of forming a tubular braid with variable braid densities are described. Methods of forming a tubular braid using a castellated mandrel are also described.
    Type: Application
    Filed: April 10, 2015
    Publication date: September 1, 2016
    Applicant: SEQUENT MEDICAL, INC.
    Inventors: Todd Hewitt, Brian Merritt, William R. Patterson, James M. Thompson, Claudio Plaza, Hung P. Tran
  • Patent number: 7028830
    Abstract: An apparatus for diverting a stream of articles includes a first conveyor driven in a first direction and at a first speed around a first axle, and a second conveyor is driven in a second direction generally opposite of the first direction and at a second speed around a second axle, the first and second conveyors disposed generally parallel to each other. A diverter element extends at least partially across the first and second conveyors to divert articles conveyed on the first conveyor onto the second conveyor. A differential drive mechanism is operatively interconnected with and driven by the first and second axles in a direction responsive to a relative rotation speed difference between the first and second axles, the differential drive mechanism being located exterior to the first and second conveyors.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: April 18, 2006
    Assignee: Hartness International, Inc.
    Inventors: Robert C. Beesley, Gregory Bruns, Brian Merritt
  • Publication number: 20050263374
    Abstract: An apparatus for diverting a stream of articles includes a first conveyor driven in a first direction and at a first speed around a first axle, and a second conveyor is driven in a second direction generally opposite of the first direction and at a second speed around a second axle, the first and second conveyors disposed generally parallel to each other. A diverter element extends at least partially across the first and second conveyors to divert articles conveyed on the first conveyor onto the second conveyor. A differential drive mechanism is operatively interconnected with and driven by the first and second axles in a direction responsive to a relative rotation speed difference between the first and second axles, the differential drive mechanism being located exterior to the first and second conveyors.
    Type: Application
    Filed: May 25, 2004
    Publication date: December 1, 2005
    Inventors: Robert Beesley, Gregory Bruns, Brian Merritt