Patents by Inventor Brian N. Hubert

Brian N. Hubert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220255492
    Abstract: A thermophotovoltaic panel assembly including a heat sink and a plurality of thermophotovoltaic modules mounted on the heat sink. Each thermophotovoltaic module includes a photovoltaic element separated from an emitter assembly by a gap. The emitter assembly includes an emitter and applies force towards the photovoltaic element to maintain the gap. The thermophotovoltaic panel assembly may also utilize a force application layer on the emitter and be bolted in place. A housing can be used for protection and to transfer energy to the emitter. The heat sink cantilevers into the housing to define a space between the thermophotovoltaic modules and the inner surface of the housing. Preferably, the housing maintains a vacuum and, in turn, the gap is evacuated. The heat sink can be monolithic and cooled with fluid pumped therethrough. The emitter may be transparent or at least partially transmissive.
    Type: Application
    Filed: February 28, 2022
    Publication date: August 11, 2022
    Inventors: Brian N. HUBERT, Bin ZHANG
  • Patent number: 11264938
    Abstract: A thermophotovoltaic panel assembly including a heat sink and a plurality of thermophotovoltaic modules mounted on the heat sink. Each thermophotovoltaic module includes a photovoltaic element separated from an emitter assembly by a gap. The emitter assembly includes an emitter and applies force towards the photovoltaic element to maintain the gap. The thermophotovoltaic panel assembly may also utilize a force application layer on the emitter and be bolted in place. A housing can be used for protection and to transfer energy to the emitter. The heat sink cantilevers into the housing to define a space between the thermophotovoltaic modules and the inner surface of the housing. Preferably, the housing maintains a vacuum and, in turn, the gap is evacuated. The heat sink can be monolithic and cooled with fluid pumped therethrough. The emitter may be transparent or at least partially transmissive.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: March 1, 2022
    Assignee: MTPV POWER CORPORATION
    Inventors: Brian N. Hubert, Bin Zhang, Eric L. Brown, Timothy R. Schuyler, David Mather, Paul Greiff, Christopher W. Melanson, Bruno A. Nardelli, Shannon J. Kovar, Trace W. Cody
  • Patent number: 10574175
    Abstract: A photovoltaic panel assembly including a heat sink and a plurality of photovoltaic modules mounted on the heat sink. Each photovoltaic module includes a photovoltaic element separated from an emitter assembly by a gap. The emitter assembly includes an emitter and applies force towards the photovoltaic element to maintain the gap. The photovoltaic panel assembly may also utilize a force application layer on the emitter and be bolted in place. A housing can be used for protection and to transfer energy to the emitter. The heat sink cantilevers into the housing to define a space between the photovoltaic modules and the inner surface of the housing. Preferably, the housing maintains a vacuum and, in turn, the gap is evacuated. The heat sink can be monolithic and cooled with fluid pumped therethrough. The emitter may be transparent or at least partially transmissive.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: February 25, 2020
    Assignee: MTPV POWER CORPORATION
    Inventors: Brian N. Hubert, Bin Zhang
  • Publication number: 20170229995
    Abstract: A thermophotovoltaic panel assembly including a heat sink and a plurality of thermophotovoltaic modules mounted on the heat sink. Each thermophotovoltaic module includes a photovoltaic element separated from an emitter assembly by a gap. The emitter assembly includes an emitter and applies force towards the photovoltaic element to maintain the gap. The thermophotovoltaic panel assembly may also utilize a force application layer on the emitter and be bolted in place. A housing can be used for protection and to transfer energy to the emitter. The heat sink cantilevers into the housing to define a space between the thermophotovoltaic modules and the inner surface of the housing. Preferably, the housing maintains a vacuum and, in turn, the gap is evacuated. The heat sink can be monolithic and cooled with fluid pumped therethrough. The emitter may be transparent or at least partially transmissive.
    Type: Application
    Filed: February 8, 2017
    Publication date: August 10, 2017
    Inventors: Brian N. Hubert, Bin Zhang
  • Publication number: 20170229996
    Abstract: A photovoltaic panel assembly including a heat sink and a plurality of photovoltaic modules mounted on the heat sink. Each photovoltaic module includes a photovoltaic element separated from an emitter assembly by a gap. The emitter assembly includes an emitter and applies force towards the photovoltaic element to maintain the gap. The photovoltaic panel assembly may also utilize a force application layer on the emitter and be bolted in place. A housing can be used for protection and to transfer energy to the emitter. The heat sink cantilevers into the housing to define a space between the photovoltaic modules and the inner surface of the housing. Preferably, the housing maintains a vacuum and, in turn, the gap is evacuated. The heat sink can be monolithic and cooled with fluid pumped therethrough. The emitter may be transparent or at least partially transmissive.
    Type: Application
    Filed: February 8, 2017
    Publication date: August 10, 2017
    Inventors: Brian N. Hubert, Bin Zhang, Eric L. Brown, Timothy R. Schuyler, DAvid Mather, Paul Greiff, Christopher W. Melanson, Bruno A. Nardelli, Shannon J. Kovar, Trace W. Cody
  • Patent number: 8828298
    Abstract: A method and system for patterning a substrate are provided. A template is formed by applying a precursor material to a patterned master substrate and curing or solidifying the precursor material. The template is detached from the master substrate using a carrier having a curved surface. The template is coated with a patterning material, and is then detached from the carrier and applied to the substrate to be patterned. The template is then dissolved without affecting the patterning material, and the patterning material may thereafter be finished to develop the pattern. In an alternate embodiment, the patterning material may be applied to the substrate and then imprinted using the template.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: September 9, 2014
    Assignee: Applied Materials, Inc.
    Inventor: Brian N. Hubert
  • Publication number: 20130153124
    Abstract: A method and system for patterning a substrate are provided. A template is formed by applying a precursor material to a patterned master substrate and curing or solidifying the precursor material. The template is detached from the master substrate using a carrier having a curved surface. The template is coated with a patterning material, and is then detached from the carrier and applied to the substrate to be patterned. The template is then dissolved without affecting the patterning material, and the patterning material may thereafter be finished to develop the pattern. In an alternate embodiment, the patterning material may be applied to the substrate and then imprinted using the template.
    Type: Application
    Filed: February 21, 2013
    Publication date: June 20, 2013
    Inventor: Brian N. HUBERT
  • Patent number: 8382466
    Abstract: A method and apparatus for patterning a substrate are provided. A template is formed by applying a precursor material to a patterned master substrate and curing or solidifying the precursor material. The template is detached from the master substrate using a carrier having a curved surface. The template is coated with a patterning material, and is then detached from the carrier and applied to the substrate to be patterned. The template is then dissolved without affecting the patterning material, and the patterning material may thereafter be finished to develop the pattern. In an alternate embodiment, the patterning material may be applied to the substrate and then imprinted using the template.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: February 26, 2013
    Assignee: Applied Materials, Inc.
    Inventor: Brian N. Hubert
  • Publication number: 20100230039
    Abstract: A method and apparatus for patterning a substrate are provided. A template is formed by applying a precursor material to a patterned master substrate and curing or solidifying the precursor material. The template is detached from the master substrate using a carrier having a curved surface. The template is coated with a patterning material, and is then detached from the carrier and applied to the substrate to be patterned. The template is then dissolved without affecting the patterning material, and the patterning material may thereafter be finished to develop the pattern. In an alternate embodiment, the patterning material may be applied to the substrate and then imprinted using the template.
    Type: Application
    Filed: March 11, 2010
    Publication date: September 16, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Brian N. Hubert
  • Publication number: 20040013982
    Abstract: Elastomeric stamps facilitate direct patterning of electrical, biological, chemical, and mechanical materials. A thin film of material is deposited on a substrate. The deposited material, either originally present as a liquid or subsequently liquefied, is patterned by embossing at low pressure using an elastomeric stamp having a raised pattern. The patterned liquid is then cured to form a functional layer. The deposition, embossing, and curing steps may be repeated numerous times with the same or different liquids, and in two or three dimensions. The various deposited layers may, for example, have varying electrical characteristics, interacting so as to produce an integrated electronic component.
    Type: Application
    Filed: December 17, 2002
    Publication date: January 22, 2004
    Applicant: Massachusetts Institute of Technology
    Inventors: Joseph M. Jacobson, Colin A. Bulthaup, Eric J. Wilhelm, Brian N. Hubert
  • Patent number: 6587408
    Abstract: Micron-scale, self-contained, ultra-high density and ultra-high speed storage devices include a read/write head and a surface, containing bit-storage domains, that acts as the storage medium. The read/write element of the memory device may consist of a single or multiple heads. The read/write head may be mounted on microelectromechanical structures driven at mechanical resonance. Addressing of individual bits is accomplished by positioning of the head element in close proximity to bit domains situated on the storage medium.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: July 1, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Joseph M. Jacobson, Brian N. Hubert, Brent Ridley
  • Patent number: 6517995
    Abstract: Elastomeric stamps facilitate direct patterning of electrical, biological, chemical, and mechanical materials. A thin film of material is deposited on a substrate. The deposited material, either originally present as a liquid or subsequently liquefied, is patterned by embossing at low pressure using an elastomeric stamp having a raised pattern. The patterned liquid is then cured to form a functional layer. The deposition, embossing, and curing steps may be repeated numerous times with the same or different liquids, and in two or three dimensions. The various deposited layers may, for example, have varying electrical characteristics, interacting so as to produce an integrated electronic component.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: February 11, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Joseph M. Jacobson, Colin A. Bulthaup, Eric J. Wilhelm, Brian N. Hubert
  • Patent number: 6294401
    Abstract: Nanoparticles are utilized to create, through deposition and patterning, functional electronic, electromechanical, and mechanical systems. At sizes ranging from 1 to 999 nm, the ratio of surface atoms to interior atoms becomes non-negligible, and particle properties therefore lie between those of the bulk and atomic materials. Monodisperse (i.e., uniformly sized) or polydisperse nanoparticles can form stable colloids or suspensions in appropriate dispersing media, facilitating their deposition and processing in a liquid state. As a result, printing technology can be utilized to deposit and pattern nanoparticles for mass production or for personal desktop manufacturing.
    Type: Grant
    Filed: June 17, 1999
    Date of Patent: September 25, 2001
    Assignee: Massachusetts Institute of Technology
    Inventors: Joseph M. Jacobson, Brian N. Hubert, Brent Ridley, Babak Nivi, Sawyer Fuller
  • Patent number: 6072716
    Abstract: Electrically erasable and rewritable memory structures with reversible states and good retention times may be constructed on flexible substrates using simple room-temperature deposition (e.g., printing) processes and curing temperatures below 110.degree. C. The memory structures are based on a polymer matrix having dispersed therein a particulate conductive or semiconductive material. When electrodes of suitable composition and geometry are used to apply electrical pulses of opposite polarity to the matrix material, reversible memory switching behavior is observed. In particular, subjection to positive or negative voltage pulses causes the devices to make fully-reversible transitions between low-resistance and high-resistance states.
    Type: Grant
    Filed: April 14, 1999
    Date of Patent: June 6, 2000
    Assignee: Massachusetts Institute of Technology
    Inventors: Joseph M. Jacobson, Brian N. Hubert
  • Patent number: 5820678
    Abstract: A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metalorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition.
    Type: Grant
    Filed: May 30, 1997
    Date of Patent: October 13, 1998
    Assignee: The Regents of the University of California
    Inventors: Brian N. Hubert, Xin Di Wu