Patents by Inventor Brian N. Ward

Brian N. Ward has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957340
    Abstract: A surgical stapler includes a first stapler half including an anvil surface having a plurality of staple forming pockets, and a second stapler half configured to releasably couple with the first stapler half. The second stapler half is operable to deploy staples toward the anvil surface. The stapler also includes a projection positioned on one of the stapler halves and extending laterally relative to a longitudinal axis of the stapler. The stapler halves are configured to pivot relative to each other about the projection. The stapler further includes a locking member positioned on the other of the stapler halves. The locking member is configured to translate along the longitudinal axis of the stapler between a locked state in which the locking member selectively captures the projection and an unlocked state in which the locking member selectively releases the projection. The locking member is biased proximally toward the locked state.
    Type: Grant
    Filed: January 5, 2022
    Date of Patent: April 16, 2024
    Assignee: Cilag GmbH International
    Inventors: Brian D. Schings, Jason D. Jones, Andrew C. Deck, Ryan J. Laurent, Bradley A. Arnold, Andréas N. Ward
  • Patent number: 9429006
    Abstract: The method includes the introduction of a proppant-free stage and a proppant laden stage into the wellbore and/or subterranean formation. The method increases the effective fracture width and enhances fracture conductivity within the formation. Either the proppant-free stage or the proppant laden stage contains a breaker. At least one of the proppant-free stage or proppant laden stage contains a viscosifying agent to which the breaker has affinity. The viscosifying agent may be a superabsorbent, a viscosifying polymer (other than a superabsorbent) or a viscoelastic surfactant. The breaker has greater affinity for the viscosifying agent not present in the same stage as the breaker. Either the proppant-free stage or the proppant laden stage may be foamed.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: August 30, 2016
    Assignee: Baker Hughes Incorporated
    Inventors: Harold Dean Brannon, Brian N. Ward, D. V. Satyanarayana Gupta, Scott Gregory Nelson
  • Publication number: 20140251610
    Abstract: The method disclosed herein includes the introduction of proppant-free stage and a proppant laden stage into the wellbore and/or subterranean formation. The method increases the effective fracture width and enhances fracture conductivity within the formation. Either the proppant-free stage or the proppant laden stage contains a breaker. At least one of the proppant-free stage or proppant laden stage contains a viscosifying agent to which the breaker has affinity. The viscosifying agent may be a superabsorbent, a viscosifying polymer (other than a superabsorbent) or a viscoelastic surfactant. The breaker has greater affinity for the viscosifying agent not present in the same stage as the breaker. Either the proppant-free stage or the proppant laden stage may be foamed.
    Type: Application
    Filed: May 22, 2014
    Publication date: September 11, 2014
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Harold Dean Brannon, Brian N. Ward, D.V. Satyanarayana Gupta, Scott Gregory Nelson
  • Patent number: 8739878
    Abstract: The method disclosed herein includes the introduction of proppant-free stage and a proppant laden stage into the wellbore and/or subterranean formation. The method increases the effective fracture width and enhances fracture conductivity within the formation. Either the proppant-free stage or the proppant laden stage contains a breaker. The other stage contains a viscosifying polymer or viscoelastic surfactant to which the breaker has affinity. The proppant-free stage may be introduced prior to introduction of the proppant laden stage into the wellbore and/or formation. Alternatively, the proppant laden stage may be introduced into the wellbore and/or formation prior to introduction of the proppant-free stage.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: June 3, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Harold Dean Brannon, Brian N. Ward
  • Publication number: 20130175032
    Abstract: The method disclosed herein includes the introduction of proppant-free stage and a proppant laden stage into the wellbore and/or subterranean formation. The method increases the effective fracture width and enhances fracture conductivity within the formation. Either the proppant-free stage or the proppant laden stage contains a breaker. The other stage contains a viscosifying polymer or viscoelastic surfactant to which the breaker has affinity. The proppant-free stage may be introduced prior to introduction of the proppant laden stage into the wellbore and/or formation. Alternatively, the proppant laden stage may be introduced into the wellbore and/or formation prior to introduction of the proppant-free stage.
    Type: Application
    Filed: March 1, 2013
    Publication date: July 11, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Harold Dean Brannon, Brian N. Ward
  • Patent number: 8408305
    Abstract: The method disclosed herein includes the introduction of proppant-free stage and a proppant laden stage into the wellbore and/or subterranean formation. The method increases the effective fracture width and enhances fracture conductivity within the formation. Either the proppant-free stage or the proppant laden stage contains a breaker. The other stage contains a viscosifying polymer or viscoelastic surfactant to which the breaker has affinity. The proppant-free stage may be introduced prior to introduction of the proppant laden stage into the wellbore and/or formation. Alternatively, the proppant laden stage may be introduced into the wellbore and/or formation prior to introduction of the proppant-free stage.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: April 2, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Harold Dean Brannon, Brian N. Ward
  • Publication number: 20120241153
    Abstract: The method disclosed herein includes the introduction of proppant-free stage and a proppant laden stage into the wellbore and/or subterranean formation. The method increases the effective fracture width and enhances fracture conductivity within the formation. Either the proppant-free stage or the proppant laden stage contains a breaker. The other stage contains a viscosifying polymer or viscoelastic surfactant to which the breaker has affinity. The proppant-free stage may be introduced prior to introduction of the proppant laden stage into the wellbore and/or formation. Alternatively, the proppant laden stage may be introduced into the wellbore and/or formation prior to introduction of the proppant-free stage.
    Type: Application
    Filed: June 8, 2012
    Publication date: September 27, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Harold Dean Brannon, Brian N. Ward
  • Patent number: 8205675
    Abstract: The method disclosed herein includes the introduction of proppant-free stage and a proppant laden stage into the wellbore and/or subterranean formation. The method increases the effective fracture width and enhances fracture conductivity within the formation. Either the proppant-free stage or the proppant laden stage contains a breaker. The other stage contains a viscosifying polymer or viscoelastic surfactant to which the breaker has affinity. The proppant-free stage may be introduced prior to introduction of the proppant laden stage into the wellbore and/or formation. Alternatively, the proppant laden stage may be introduced into the wellbore and/or formation prior to introduction of the proppant-free stage.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: June 26, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Harold Dean Brannon, Brian N. Ward
  • Publication number: 20100089580
    Abstract: The method disclosed herein includes the introduction of proppant-free stage and a proppant laden stage into the wellbore and/or subterranean formation. The method increases the effective fracture width and enhances fracture conductivity within the formation. Either the proppant-free stage or the proppant laden stage contains a breaker. The other stage contains a viscosifying polymer or viscoelastic surfactant to which the breaker has affinity. The proppant-free stage may be introduced prior to introduction of the proppant laden stage into the wellbore and/or formation. Alternatively, the proppant laden stage may be introduced into the wellbore and/or formation prior to introduction of the proppant-free stage.
    Type: Application
    Filed: October 9, 2008
    Publication date: April 15, 2010
    Inventors: Harold Dean Brannon, Brian N. Ward