Patents by Inventor Brian P. Conchieri

Brian P. Conchieri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10056306
    Abstract: Aspects of the present disclosure include a test structure that includes two or more devices. Each device includes a wire disposed within a dielectric and a first via disposed over the wire and in electrical contact with the wire. Each device includes a test pad electrically connected to the first via and a polysilicon resistor electrically connected to the wire. Each of the polysilicon resistors of the two or more devices are electrically tied together. A method for forming the interconnect structure to be used for testing is also provided.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: August 21, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Edward C. Cooney, III, Gary L. Milo, Thomas W. Weeks, Patrick S. Spinney, John C. Hall, Brian P. Conchieri, Brett T. Cucci, Thomas C. Lee
  • Publication number: 20170229358
    Abstract: Aspects of the present disclosure include a test structure that includes two or more devices. Each device includes a wire disposed within a dielectric and a first via disposed over the wire and in electrical contact with the wire. Each device includes a test pad electrically connected to the first via and a polysilicon resistor electrically connected to the wire. Each of the polysilicon resistors of the two or more devices are electrically tied together. A method for forming the interconnect structure to be used for testing is also provided.
    Type: Application
    Filed: February 4, 2016
    Publication date: August 10, 2017
    Inventors: Edward C. Cooney, III, Gary L. Milo, Thomas W. Weeks, Patrick S. Spinney, John C. Hall, Brian P. Conchieri, Brett T. Cucci, Thomas C. Lee
  • Patent number: 6917841
    Abstract: A method and system for applying run rules on an individual part number basis in order to detect out-of-control events for a distinct sub-population within a general technology population. The invention thus provides for line tailoring by part number by acquiring measurement data of the part number from a manufacturing line for a measured parameter; retrieving a specification for the part number from a database; executing custom run rules by part number against the measured data using the specifications; and rejecting requests to process the part number if a run rule violation exists.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: July 12, 2005
    Assignee: International Business Machines Corporation
    Inventors: Brian P. Conchieri, Bryan L. Rose, Steven M. Ruegsegger, Sylvia R. Tousley
  • Patent number: 6855207
    Abstract: An intergrated closed apparatus and system for eliminating contaminants including metallic and/or hydrocarbon-containing contaminants on a surface of a semiconductor substrate. The apparatus and system include a heating chamber for heating the contaminated substrate to an elevated temperature, and an input line for purging the chamber with a chlorine-containing gas. The chlorine dissociates from the chlorine-containing gas, reacts with the contaminates, and forms volatile chloride byproducts which are removed from the heating chamber via an output line. A cooling chamber of the apparatus and system having an input line for providing a gas therein cools the substrate. A workpiece holds the substrate, which in turn, is held in position by a pedestal. The pedestal is in contact with a door that seals the closed apparatus and system, whereby the door transfers the substrate from the heating chamber to the cooling chamber, and vice versa.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: February 15, 2005
    Assignee: International Business Machines Corporation
    Inventors: Brian P. Conchieri, David D. Dussault, Mousa H. Ishaq
  • Publication number: 20040118810
    Abstract: A method and apparatus are provided for eliminating contaminants including metallic and/or hydrocarbon-containing contaminants on a surface of a semiconductor substrate by heating a semiconductor substrate which may have contaminates on the surface thereof to an elevated temperature within an integrated closed system while simultaneously purging the integrated closed system with a chlorine-containing gas. At the elevated temperatures the chlorine dissociates from the chlorine-containing gas and reacts with the contaminates on the substrate surface to form volatile chloride byproducts with such contaminants which are removed from the integrated closed system while the substrate is continuously heated and purged with the chlorine-containing gas. Subsequently, the substrate is moved to a cooling chamber within the integrated closed system and cooled to provide a semiconductor substrate having a clean surface.
    Type: Application
    Filed: December 10, 2003
    Publication date: June 24, 2004
    Applicant: International Business Machines Corporation
    Inventors: Brian P. Conchieri, David D. Dussault, Mousa H. Ishaq
  • Publication number: 20040122546
    Abstract: A method and system for applying run rules on an individual part number basis in order to detect out-of-control events for a distinct sub-population within a general technology population. The invention thus provides for line tailoring by part number by acquiring measurement data of the part number from a manufacturing line for a measured parameter; retrieving a specification for the part number from a database; executing custom run rules by part number against the measured data using the specifications; and rejecting requests to process the part number if a run rule violation exists.
    Type: Application
    Filed: December 18, 2002
    Publication date: June 24, 2004
    Applicant: International Business Machines Corporation
    Inventors: Brian P. Conchieri, Bryan L. Rose, Steven M. Ruegsegger, Sylvia R. Tousley
  • Patent number: 6715497
    Abstract: A method and apparatus are provided for eliminating contaminants including metallic and/or hydrocarbon-containing contaminants on a surface of a semiconductor substrate by heating a semiconductor substrate which may have contaminants on the surface thereof to an elevated temperature within an integrated closed system while simultaneously purging the integrated closed system with a chlorine-containing gas. At the elevated temperatures the chlorine dissociates from the chlorine-containing gas and reacts with the contaminants on the substrate surface to form volatile chloride byproducts with such contaminants which are removed from the integrated closed system while the substrate is continuously heated and purged with the chlorine-containing gas. Subsequently, the substrate is moved to a cooling chamber within the integrated closed system and cooled to provide a semiconductor substrate having a clean surface.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: April 6, 2004
    Assignee: International Business Machines Corporation
    Inventors: Brian P. Conchieri, David D. Dussault, Mousa H. Ishaq
  • Patent number: 6697697
    Abstract: The present invention discloses the use of ion implant recipe changes to control the effective channel length by compensating for any variation in the gate electrode width. The invention provides a method for controlling the effective channel length in FETs by measuring the gate electrode width, sending the measured gate electrode width to an ion implant controller, calculating a desired ion implant condition which compensates for any deviation in the effective channel length from target, and subsequently selecting or generating an ion implant recipe based on the desired conditions. Such ion implant recipe is then implanted into the FET to control the effective channel length by defining the halo, LDD, source, drain, or any other doped regions of the device which define the effective channel length, thereby resulting in a manufacturing process with higher yields and less scrap.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: February 24, 2004
    Assignee: International Business Machines Corporation
    Inventors: Brian P. Conchieri, Steven M. Ruegsegger, John J. Ellis-Monaghan
  • Publication number: 20030157786
    Abstract: A method and apparatus are provided for eliminating contaminants including metallic and/or hydrocarbon-containing contaminants on a surface of a semiconductor substrate by heating a semiconductor substrate which may have contaminates on the surface thereof to an elevated temperature within an integrated closed system while simultaneously purging the integrated closed system with a chlorine-containing gas. At the elevated temperatures the chlorine dissociates from the chlorine-containing gas and reacts with the contaminates on the substrate surface to form volatile chloride byproducts with such contaminants which are removed from the integrated closed system while the substrate is continuously heated and purged with the chlorine-containing gas. Subsequently, the substrate is moved to a cooling chamber within the integrated closed system and cooled to provide a semiconductor substrate having a clean surface.
    Type: Application
    Filed: January 2, 2001
    Publication date: August 21, 2003
    Applicant: International Business Machines Corporation
    Inventors: Brian P. Conchieri, David D. Dussault, Mousa H. Ishaq
  • Publication number: 20020182757
    Abstract: The present invention discloses the use of ion implant recipe changes to control the effective channel length by compensating for any variation in the gate electrode width. The invention provides a method for controlling the effective channel length in FETs by measuring the gate electrode width, sending the measured gate electrode width to an ion implant controller, calculating a desired ion implant condition which compensates for any deviation in the effective channel length from target, and subsequently selecting or generating an ion implant recipe based on the desired conditions. Such ion implant recipe is then implanted into the FET to control the effective channel length by defining the halo, LDD, source, drain, or any other doped regions of the device which define the effective channel length, thereby resulting in a manufacturing process with higher yields and less scrap.
    Type: Application
    Filed: July 9, 2002
    Publication date: December 5, 2002
    Applicant: International Business Machines Corporation
    Inventors: Brian P. Conchieri, Steven M. Ruegsegger, John J. Ellis-Monaghan
  • Patent number: 6482660
    Abstract: The present invention discloses the use of ion implant recipe changes to control the effective channel length by compensating for any variation in the gate electrode width. The invention provides a method for controlling the effective channel length in FETs by measuring the gate electrode width, sending the measured gate electrode width to an ion implant controller, calculating a desired ion implant condition which compensates for any deviation in the effective channel length from target, and subsequently selecting or generating an ion implant recipe based on the desired conditions. Such ion implant recipe is then implanted into the FET to control the effective channel length by defining the halo, LDD, source, drain, or any other doped regions of the device which define the effective channel length, thereby resulting in a manufacturing process with higher yields and less scrap.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: November 19, 2002
    Assignee: International Business Machines Corporation
    Inventors: Brian P. Conchieri, Steven M. Ruegsegger, John J. Ellis-Monaghan
  • Publication number: 20020132377
    Abstract: The present invention discloses the use of ion implant recipe changes to control the effective channel length by compensating for any variation in the gate electrode width. The invention provides a method for controlling the effective channel length in FETs by measuring the gate electrode width, sending the measured gate electrode width to an ion implant controller, calculating a desired ion implant condition which compensates for any deviation in the effective channel length from target, and subsequently selecting or generating an ion implant recipe based on the desired conditions. Such ion implant recipe is then implanted into the FET to control the effective channel length by defining the halo, LDD, source, drain, or any other doped regions of the device which define the effective channel length, thereby resulting in a manufacturing process with higher yields and less scrap.
    Type: Application
    Filed: March 19, 2001
    Publication date: September 19, 2002
    Applicant: International Business Machines Corporation
    Inventors: Brian P. Conchieri, Steven M. Ruegsegger, John J. Ellis-Monaghan