Patents by Inventor Brian P. Tonner

Brian P. Tonner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240100362
    Abstract: The accuracy charged-particle beam trajectories used for radiation therapy in patients is improved by providing feedback on the beam location within a patient's body or a quality assurance phantom. Particle beams impinge on a patient or phantom in an arrangement designed to deliver radiation dose to a tumor, while avoiding as much normal tissue as can be achieved. By placing fiducial markers in the tumor or phantom that contain specific atomic constituents, a detection signal consisting of atomic fluorescence is produced by the particle beam. An algorithm can combine the detected fluorescence signal with the known location of the fiducial markers to determine the location of the particle beam in the patient or phantom.
    Type: Application
    Filed: December 7, 2023
    Publication date: March 28, 2024
    Inventor: Brian P. Tonner
  • Patent number: 11878186
    Abstract: The accuracy charged-particle beam trajectories used for radiation therapy in patients is improved by providing feedback on the beam location within a patient's body or a quality assurance phantom. Particle beams impinge on a patient or phantom in an arrangement designed to deliver radiation dose to a tumor, while avoiding as much normal tissue as can be achieved. By placing fiducial markers in the tumor or phantom that contain specific atomic constituents, a detection signal consisting of atomic fluorescence is produced by the particle beam. An algorithm can combine the detected fluorescence signal with the known location of the fiducial markers to determine the location of the particle beam in the patient or phantom.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: January 23, 2024
    Assignee: H. Lee Moffitt Cancer Center and Research Institute, Inc.
    Inventor: Brian P. Tonner
  • Publication number: 20210236851
    Abstract: The accuracy charged-particle beam trajectories used for radiation therapy in patients is improved by providing feedback on the beam location within a patient's body or a quality assurance phantom. Particle beams impinge on a patient or phantom in an arrangement designed to deliver radiation dose to a tumor, while avoiding as much normal tissue as can be achieved. By placing fiducial markers in the tumor or phantom that contain specific atomic constituents, a detection signal consisting of atomic fluorescence is produced by the particle beam. An algorithm can combine the detected fluorescence signal with the known location of the fiducial markers to determine the location of the particle beam in the patient or phantom.
    Type: Application
    Filed: January 13, 2021
    Publication date: August 5, 2021
    Inventor: Brian P. Tonner
  • Publication number: 20150196779
    Abstract: The accuracy charged-particle beam trajectories used for radiation therapy in patients is improved by providing feedback on the beam location within a patient's body or a quality assurance phantom. Particle beams impinge on a patient or phantom in an arrangement designed to deliver radiation dose to a tumor, while avoiding as much normal tissue as can be achieved. By placing fiducial markers in the tumor or phantom that contain specific atomic constituents, a detection signal consisting of atomic fluorescence is produced by the particle beam. An algorithm can combine the detected fluorescence signal with the known location of the fiducial markers to determine the location of the particle beam in the patient or phantom.
    Type: Application
    Filed: July 29, 2013
    Publication date: July 16, 2015
    Inventor: Brian P. Tonner
  • Patent number: 5227630
    Abstract: A method and apparatus for imaging of an atomic environment are disclosed. The method includes detecting and measuring the intensity of a diffuse low energy electron diffraction pattern. The diffraction pattern may be formed by directing a beam of electrons against the surface of a sample, or by directing a beam of X-rays against the surface of a sample. The diffraction pattern may be energy-filtered to obtain a diffraction pattern corresponding to the lower energy electrons emitted by the surface. Data corresponding to reconstructed amplitudes of a waveform is generated by operating on the intensity data. The data corresponding to the reconstructed amplitude is capable of being displayed as a variety of slices or two-dimensional planes of the three-dimensional image of an atomic environment, and is capable of being displayed holographically.
    Type: Grant
    Filed: August 20, 1990
    Date of Patent: July 13, 1993
    Assignee: Board of Regents of the University of Wisconsin System
    Inventors: Dilano K. Saldin, Brian P. Tonner, Gerald R. Harp