Patents by Inventor Brian Piorek

Brian Piorek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200191378
    Abstract: Methods and apparatus for vaporizing liquid into the surrounding environment, including directing liquid from a liquid source through an inverse-opal wicking structure to a vaporization port where the vaporization port is formed by a through-hole in a structure connecting a first side of the structure to a second side, with all dimensions ranging from 10 um to 300 um, that is in fluid communication with the liquid source and the surrounding environment so that fluid is transported through the vaporization port between the first and the second side. The methods and apparatus includes plurality of heating elements that may be individually and/or selectively addressable by at least three electrode leads.
    Type: Application
    Filed: February 23, 2020
    Publication date: June 18, 2020
    Inventors: Carl D. Meinhart, Brian Piorek, Nicholas B. Judy
  • Publication number: 20200173648
    Abstract: Methods and apparatus for vaporizing liquid into the surrounding environment, including directing liquid from a liquid source to a vaporization port where the vaporization port has lateral dimensions varying from 10 um to 300 um, applying heat to the liquid in the vaporization port with an at least one heating element located in thermal communication to the vaporization port, and releasing vaporized liquid from the vaporization port into the surrounding environment so that fluid is transported through the depth of the structure.
    Type: Application
    Filed: November 8, 2019
    Publication date: June 4, 2020
    Inventors: Carl D. Meinhart, Brian Piorek, Nicholas B. Judy
  • Patent number: 10612770
    Abstract: Methods and apparatus for vaporizing liquid into the surrounding environment, including directing liquid from a liquid source through an inverse-opal wicking structure to a vaporization port where the vaporization port is formed by a through-hole in a structure connecting a first side of the structure to a second side, with all dimensions ranging from 10 um to 300 um, that is in fluid communication with the liquid source and the surrounding environment so that fluid is transported through the vaporization port between the first and the second side. The methods and apparatus includes plurality of heating elements that may be individually and/or selectively addressable by at least three electrode leads.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: April 7, 2020
    Assignee: Numerical Design, Inc.
    Inventors: Carl D. Meinhart, Brian Piorek, Nicholas B. Judy
  • Patent number: 10502409
    Abstract: Methods and apparatus for vaporizing liquid into the surrounding environment, including directing liquid from a liquid source to a vaporization port where the vaporization port has lateral dimensions varying from 10 um to 300 um, applying heat to the liquid in the vaporization port with an at least one heating element located in thermal communication to the vaporization port, and releasing vaporized liquid from the vaporization port into the surrounding environment so that fluid is transported through the depth of the structure.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: December 10, 2019
    Assignee: Numerical Design, Inc.
    Inventors: Carl D. Meinhart, Brian Piorek, Nicholas B. Judy
  • Patent number: 10416082
    Abstract: Provided are methods, devices and systems that utilize free-surface fluidics and SERS for analyte detection with high sensitivity and specificity. The molecules can be airborne agents, including but not limited to explosives, narcotics, hazardous chemicals, or other chemical species. The free-surface fluidic architecture is created using an open microchannel, and exhibits a large surface to volume ratio. The free-surface fluidic interface can filter interferent molecules, while concentrating airborne analyte molecules. The microchannel flow enables controlled aggregation of SERS-active probe particles in the flow, thereby enhancing the detector's sensitivity.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: September 17, 2019
    Assignees: The Regents of the University of California, Board of Trustees of the Leland Stanford Junior University
    Inventors: Carl D. Meinhart, Brian Piorek, Seung Joon Lee, Martin Moskovits, Sanjoy Banerjee, Juan Santiago
  • Publication number: 20180024067
    Abstract: Provided are methods, devices and systems that utilize free-surface fluidics and SERS for analyte detection with high sensitivity and specificity. The molecules can be airborne agents, including but not limited to explosives, narcotics, hazardous chemicals, or other chemical species. The free-surface fluidic architecture is created using an open microchannel, and exhibits a large surface to volume ratio. The free-surface fluidic interface can filter interferent molecules, while concentrating airborne analyte molecules. The microchannel flow enables controlled aggregation of SERS-active probe particles in the flow, thereby enhancing the detector's sensitivity.
    Type: Application
    Filed: July 31, 2017
    Publication date: January 25, 2018
    Inventors: Carl D. Meinhart, Brian Piorek, Seung Joon Lee, Martin Moskovits, Sanjoy Banerjee, Juan Santiago
  • Publication number: 20180015385
    Abstract: Methods and apparatus for vaporizing liquid from a liquid source into the surrounding environment, where the apparatus comprises at least one manifold comprising at least one liquid port formed by a through-hole and at least one flow channel, wherein the liquid port is in fluid communication with the liquid source and the flow channel. The methods and apparatus includes at least one vaporization port in a planar structure connecting a first side of the structure to a second side, that is in fluid communication with the at least one flow channel and the surrounding environment, wherein fluid flow through the liquid and vaporization ports is substantially perpendicular to the plane of the structure, and the flow channels are substantially parallel to the plane of the structure. The methods and apparatus further includes at least one heating element that is in thermal communication to the at least one vaporization port and at least one flow channel.
    Type: Application
    Filed: September 26, 2017
    Publication date: January 18, 2018
    Applicant: Numerical Design, Inc.
    Inventors: Carl D. Meinhart, Brian Piorek, Nicholas B. Judy
  • Patent number: 9719930
    Abstract: Provided are methods, devices and systems that utilize free-surface fluidics and SERS for analyte detection with high sensitivity and specificity. The molecules can be airborne agents, including but not limited to explosives, narcotics, hazardous chemicals, or other chemical species. The free-surface fluidic architecture is created using an open microchannel, and exhibits a large surface to volume ratio. The free-surface fluidic interface can filter interferent molecules, while concentrating airborne analyte molecules. The microchannel flow enables controlled aggregation of SERS-active probe particles in the flow, thereby enhancing the detector's sensitivity.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: August 1, 2017
    Assignees: The Regents of the University of California, Board of Trustees of the Leland Stanford Junior University
    Inventors: Carl D. Meinhart, Brian Piorek, Seung Joon Lee, Martin Moskovits, Sanjoy Banerjee, Juan Santiago
  • Publication number: 20170106113
    Abstract: Methods and apparatus for vaporizing liquid into the surrounding environment, including directing liquid from a liquid source through an inverse-opal wicking structure to a vaporization port where the vaporization port is formed by a through-hole in a structure connecting a first side of the structure to a second side, with all dimensions ranging from 10 um to 300 um, that is in fluid communication with the liquid source and the surrounding environment so that fluid is transported through the vaporization port between the first and the second side. The methods and apparatus includes plurality of heating elements that may be individually and/or selectively addressable by at least three electrode leads.
    Type: Application
    Filed: June 2, 2016
    Publication date: April 20, 2017
    Applicant: Numerical Design, Inc.
    Inventors: Carl D. Meinhart, Brian Piorek, Nicholas B. Judy
  • Publication number: 20170108210
    Abstract: Methods and apparatus for vaporizing liquid into the surrounding environment, including directing liquid from a liquid source through an inverse-opal wicking structure to a vaporization port where the vaporization port is formed by a through-hole in a structure connecting a first side of the structure to a second side, with all dimensions ranging from 10 um to 300 um, that is in fluid communication with the liquid source and the surrounding environment so that fluid is transported through the vaporization port between the first and the second side. The methods and apparatus includes plurality of heating elements that may be individually and/or selectively addressable by at least three electrode leads.
    Type: Application
    Filed: June 2, 2016
    Publication date: April 20, 2017
    Applicant: Numerical Design, Inc.
    Inventors: Carl D. Meinhart, Brian Piorek, Nicholas B. Judy
  • Publication number: 20160205727
    Abstract: Methods and apparatus for vaporizing liquid into the surrounding environment, including directing liquid from a liquid source to a vaporization port where the vaporization port has lateral dimensions varying from 10 um to 300 um, by magnetically inductive heating a liquid in the vaporization port with an at least one inductive heating element located in thermal communication to the vaporization port, and releasing vaporized liquid from the vaporization port into the surrounding environment so that fluid is transported through the depth of the structure.
    Type: Application
    Filed: November 23, 2015
    Publication date: July 14, 2016
    Applicant: Numerical Design, Inc.
    Inventors: Carl D. Meinhart, Brian Piorek, Nicholas B. Judy
  • Publication number: 20160138795
    Abstract: Methods and apparatus for vaporizing liquid into the surrounding environment, including directing liquid from a liquid source to a vaporization port where the vaporization port has lateral dimensions varying from 10 um to 300 um, applying heat to the liquid in the vaporization port with an at least one heating element located in thermal communication to the vaporization port, and releasing vaporized liquid from the vaporization port into the surrounding environment so that fluid is transported through the depth of the structure.
    Type: Application
    Filed: October 16, 2015
    Publication date: May 19, 2016
    Applicant: NUMERICAL DESIGN, INC.
    Inventors: Carl D. Meinhart, Brian Piorek, Nicholas B. Judy
  • Publication number: 20160033415
    Abstract: Provided are methods, devices and systems that utilize free-surface fluidics and SERS for analyte detection with high sensitivity and specificity. The molecules can be airborne agents, including but not limited to explosives, narcotics, hazardous chemicals, or other chemical species. The free-surface fluidic architecture is created using an open microchannel, and exhibits a large surface to volume ratio. The free-surface fluidic interface can filter interferent molecules, while concentrating airborne analyte molecules. The microchannel flow enables controlled aggregation of SERS-active probe particles in the flow, thereby enhancing the detector's sensitivity.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 4, 2016
    Inventors: Carl D. Meinhart, Brian Piorek, Seung Joon Lee, Martin Moskovits, Sanjoy Banerjee, Juan Santiago
  • Patent number: 9097676
    Abstract: Provided are methods, devices and systems that utilize free-surface fluidics and SERS for analyte detection with high sensitivity and specificity. The molecules can be airborne agents, including but not limited to explosives, narcotics, hazardous chemicals, or other chemical species. The free-surface fluidic architecture is created using an open microchannel, and exhibits a large surface to volume ratio. The free-surface fluidic interface can filter interferent molecules, while concentrating airborne analyte molecules. The microchannel flow enables controlled aggregation of SERS-active probe particles in the flow, thereby enhancing the detector's sensitivity.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: August 4, 2015
    Assignees: The Regents of the University of California, Board of Trustees of the Leland Stanford Junior University
    Inventors: Carl D. Meinhart, Brian Piorek, Seung Joon Lee, Martin Moskovits, Sanjoy Banerjee, Juan Santiago
  • Publication number: 20130121884
    Abstract: Provided are methods, devices and systems that utilize free-surface fluidics and SERS for analyte detection with high sensitivity and specificity. The molecules can be airborne agents, including but not limited to explosives, narcotics, hazardous chemicals, or other chemical species. The free-surface fluidic architecture is created using an open microchannel, and exhibits a large surface to volume ratio. The free-surface fluidic interface can filter interferent molecules, while concentrating airborne analyte molecules. The microchannel flow enables controlled aggregation of SERS-active probe particles in the flow, thereby enhancing the detector's sensitivity.
    Type: Application
    Filed: August 1, 2012
    Publication date: May 16, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Carl Meinhart, Brian Piorek, Seung Joon Lee, Martin Moskovits, Sanjoy Banerjee, Juan Santiago
  • Patent number: 8431409
    Abstract: Provided are methods, devices and systems that utilize free-surface fluidics and SERS for analyte detection with high sensitivity and specificity. The molecules can be airborne agents, including but not limited to explosives, narcotics, hazardous chemicals, or other chemical species. The free-surface fluidic architecture is created using an open microchannel, and exhibits a large surface to volume ratio. The free-surface fluidic interface can filter interferent molecules, while concentrating airborne analyte molecules. The microchannel flow enables controlled aggregation of SERS-active probe particles in the flow, thereby enhancing the detector's sensitivity.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: April 30, 2013
    Assignees: The Regents of the University of California, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Carl D. Meinhart, Brian Piorek, Seung Joon Lee, Martin Moskovits, Sanjoy Banerjee, Juan Santiago
  • Patent number: 8247238
    Abstract: Provided are methods, devices and systems that utilize free-surface fluidics and SERS for analyte detection with high sensitivity and specificity. The molecules can be airborne agents, including but not limited to explosives, narcotics, hazardous chemicals, or other chemical species. The free-surface fluidic architecture is created using an open microchannel, and exhibits a large surface to volume ratio. The free-surface fluidic interface can filter interferent molecules, while concentrating airborne analyte molecules. The microchannel flow enables controlled aggregation of SERS-active probe particles in the flow, thereby enhancing the detector's sensitivity.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: August 21, 2012
    Assignee: The Regents of the University of California
    Inventors: Carl D. Meinhart, Brian Piorek, Seung Joon Lee, Martin Moskovits, Sanjoy Banerjee, Juan Santiago
  • Publication number: 20120148451
    Abstract: Provided are methods, devices and systems that utilize free-surface fluidics and SERS for analyte detection with high sensitivity and specificity. The molecules can be airborne agents, including but not limited to explosives, narcotics, hazardous chemicals, or other chemical species. The free-surface fluidic architecture is created using an open microchannel, and exhibits a large surface to volume ratio. The free-surface fluidic interface can filter interferent molecules, while concentrating airborne analyte molecules. The microchannel flow enables controlled aggregation of SERS-active probe particles in the flow, thereby enhancing the detector's sensitivity.
    Type: Application
    Filed: August 25, 2011
    Publication date: June 14, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Carl Meinhart, Brian Piorek, Seung Joon Lee, Martin Moskovits, Sanjoy Banerjee, Juan Santiago
  • Patent number: 8017408
    Abstract: Provided are methods, devices and systems that utilize free-surface fluidics and SERS for analyte detection with high sensitivity and specificity. The molecules can be airborne agents, including but not limited to explosives, narcotics, hazardous chemicals, or other chemical species. The free-surface fluidic architecture is created using an open microchannel, and exhibits a large surface to volume ratio. The free-surface fluidic interface can filter interferent molecules, while concentrating airborne analyte molecules. The microchannel flow enables controlled aggregation of SERS-active probe particles in the flow, thereby enhancing the detector's sensitivity.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: September 13, 2011
    Assignee: The Regents of the University of California
    Inventors: Carl D. Meinhart, Brian Piorek, Seung Joon Lee, Martin Moskovits, Sanjoy Banerjee, Juan G. Santiago
  • Publication number: 20100210029
    Abstract: Provided are methods, devices and systems that utilize free-surface fluidics and SERS for analyte detection with high sensitivity and specificity. The molecules can be airborne agents, including but not limited to explosives, narcotics, hazardous chemicals, or other chemical species. The free-surface fluidic architecture is created using an open microchannel, and exhibits a large surface to volume ratio. The free-surface fluidic interface can filter interferent molecules, while concentrating airborne analyte molecules. The microchannel flow enables controlled aggregation of SERS-active probe particles in the flow, thereby enhancing the detector's sensitivity.
    Type: Application
    Filed: April 25, 2008
    Publication date: August 19, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Carl D. Meinhart, Brian Piorek, Seung Joon Lee, Martin Moskovits, Sanjoy Banerjee, Juan G. Santiago