Patents by Inventor Brian R. Koch
Brian R. Koch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11789219Abstract: Described herein are photonic systems and devices including a optical interface unit disposed on a bottom side of a photonic integrated circuit (PIC) to receive light from an emitter of the PIC. A top side of the PIC includes a flip-chip interface for electrically coupling the PIC to an organic substrate via the top side. An alignment feature corresponding to the emitter is formed with the emitter to be offset by a predetermined distance value; because the emitter and the alignment feature are formed using a shared processing operation, the offset (i.e., predetermined distance value) may be precise and consistent across similarly produced PICs. The PIC comprises a processing feature to image the alignment feature from the bottom side (e.g., a hole). A heat spreader layer surrounds the optical interface unit and is disposed on the bottom side of the PIC to spread heat from the PIC.Type: GrantFiled: September 16, 2021Date of Patent: October 17, 2023Assignee: OpenLight Photonics, Inc.Inventors: Gregory Alan Fish, Brian R. Koch
-
Patent number: 11668994Abstract: In photonic integrated circuits implemented in silicon-on-insulator substrates, non-conductive channels formed, in accordance with various embodiments, in the silicon device layer and/or the silicon handle of the substrate in regions underneath radio-frequency transmission lines of photonic devices can provide breaks in parasitic conductive layers of the substrate, thereby reducing radio-frequency substrate losses.Type: GrantFiled: March 16, 2021Date of Patent: June 6, 2023Assignee: OpenLight Photonics, Inc.Inventors: John Parker, Gregory Alan Fish, Brian R. Koch
-
Patent number: 11585978Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.Type: GrantFiled: May 11, 2021Date of Patent: February 21, 2023Assignee: OpenLight Photonics, Inc.Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
-
Publication number: 20220173572Abstract: An optical system can lock a wavelength of a tunable laser to a specified wavelength of a temperature-insensitive spectral profile of a spectral filter. In some examples, the spectral filter, such as a Fabry-Perot filter, can have a temperature-insensitive peak wavelength and increasing attenuation at wavelengths away from the peak wavelength. The spectral filter can spectrally filter the laser light to form filtered laser light. A detector can detect at least a fraction of the filtered laser light. Circuitry coupled to the detector and the laser can tune the tunable laser to set a signal from the detector to a specified value corresponding to a specified wavelength in the spectral profile, and thereby adjust the selectable wavelength of the tunable laser to match the specified wavelength. In some examples, the optical system can include a polarization rotator, and can use polarization to separate incident light from return light.Type: ApplicationFiled: February 16, 2022Publication date: June 2, 2022Inventors: Brian R. Koch, Jonathan Edgar Roth
-
Patent number: 11289877Abstract: An optical system can lock a wavelength of a tunable laser to a specified wavelength of a temperature-insensitive spectral profile of a spectral filter. In some examples, the spectral filter, such as a Fabry-Perot filter, can have a temperature-insensitive peak wavelength and increasing attenuation at wavelengths away from the peak wavelength. The spectral filter can spectrally filter the laser light to form filtered laser light. A detector can detect at least a fraction of the filtered laser light. Circuitry coupled to the detector and the laser can tune the tunable laser to set a signal from the detector to a specified value corresponding to a specified wavelength in the spectral profile, and thereby adjust the selectable wavelength of the tunable laser to match the specified wavelength. In some examples, the optical system can include a polarization rotator, and can use polarization to separate incident light from return light.Type: GrantFiled: February 19, 2020Date of Patent: March 29, 2022Assignee: Aurrion, Inc.Inventors: Brian R. Koch, Jonathan Edgar Roth
-
Publication number: 20220003945Abstract: Described herein are photonic systems and devices including a optical interface unit disposed on a bottom side of a photonic integrated circuit (PIC) to receive light from an emitter of the PIC. A top side of the PIC includes a flip-chip interface for electrically coupling the PIC to an organic substrate via the top side. An alignment feature corresponding to the emitter is formed with the emitter to be offset by a predetermined distance value; because the emitter and the alignment feature are formed using a shared processing operation, the offset (i.e., predetermined distance value) may be precise and consistent across similarly produced PICs. The PIC comprises a processing feature to image the alignment feature from the bottom side (e.g., a hole). A heat spreader layer surrounds the optical interface unit and is disposed on the bottom side of the PIC to spread heat from the PIC.Type: ApplicationFiled: September 16, 2021Publication date: January 6, 2022Inventors: Gregory Alan Fish, Brian R. Koch
-
Patent number: 11150423Abstract: Described herein are photonic systems and devices including a optical interface unit disposed on a bottom side of a photonic integrated circuit (PIC) to receive light from an emitter of the PIC. A top side of the PIC includes a flip-chip interface for electrically coupling the PIC to an organic substrate via the top side. An alignment feature corresponding to the emitter is formed with the emitter to be offset by a predetermined distance value; because the emitter and the alignment feature are formed using a shared processing operation, the offset (i.e., predetermined distance value) may be precise and consistent across similarly produced PICs. The PIC comprises a processing feature to image the alignment feature from the bottom side (e.g., a hole). A heat spreader layer surrounds the optical interface unit and is disposed on the bottom side of the PIC to spread heat from the PIC.Type: GrantFiled: March 9, 2020Date of Patent: October 19, 2021Assignee: Aurrion, Inc.Inventors: Gregory Alan Fish, Brian R. Koch
-
Publication number: 20210278591Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.Type: ApplicationFiled: May 11, 2021Publication date: September 9, 2021Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
-
Publication number: 20210215992Abstract: In photonic integrated circuits implemented in silicon-on-insulator substrates, nonconductive channels formed, in accordance with various embodiments, in the silicon device layer and/or the silicon handle of the substrate in regions underneath radio-frequency transmission lines of photonic devices can provide breaks in parasitic conductive layers of the substrate, thereby reducing radio-frequency substrate losses.Type: ApplicationFiled: March 16, 2021Publication date: July 15, 2021Inventors: John Parker, Gregory Alan Fish, Brian R. Koch
-
Patent number: 11022751Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.Type: GrantFiled: May 19, 2020Date of Patent: June 1, 2021Assignee: Aurrion, Inc.Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
-
Patent number: 10976637Abstract: In photonic integrated circuits implemented in silicon-on-insulator substrates, non-conductive channels formed, in accordance with various embodiments, in the silicon device layer and/or the silicon handle of the substrate in regions underneath radio-frequency transmission lines of photonic devices can provide breaks in parasitic conductive layers of the substrate, thereby reducing radio-frequency substrate losses.Type: GrantFiled: February 6, 2019Date of Patent: April 13, 2021Assignee: Aurrion, Inc.Inventors: John Parker, Gregory Alan Fish, Brian R. Koch
-
Publication number: 20200278496Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.Type: ApplicationFiled: May 19, 2020Publication date: September 3, 2020Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
-
Publication number: 20200209496Abstract: Described herein are photonic systems and devices including a optical interface unit disposed on a bottom side of a photonic integrated circuit (PIC) to receive light from an emitter of the PIC. A top side of the PIC includes a flip-chip interface for electrically coupling the PIC to an organic substrate via the top side. An alignment feature corresponding to the emitter is formed with the emitter to be offset by a predetermined distance value; because the emitter and the alignment feature are formed using a shared processing operation, the offset (i.e., predetermined distance value) may be precise and consistent across similarly produced PICs. The PIC comprises a processing feature to image the alignment feature from the bottom side (e.g., a hole). A heat spreader layer surrounds the optical interface unit and is disposed on the bottom side of the PIC to spread heat from the PIC.Type: ApplicationFiled: March 9, 2020Publication date: July 2, 2020Inventors: Gregory Alan Fish, Brian R. Koch
-
Patent number: 10684413Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.Type: GrantFiled: August 15, 2019Date of Patent: June 16, 2020Assignee: Aurrion, Inc.Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
-
Publication number: 20200185876Abstract: An optical system can lock a wavelength of a tunable laser to a specified wavelength of a temperature-insensitive spectral profile of a spectral filter. In some examples, the spectral filter, such as a Fabry-Perot filter, can have a temperature-insensitive peak wavelength and increasing attenuation at wavelengths away from the peak wavelength. The spectral filter can spectrally filter the laser light to form filtered laser light. A detector can detect at least a fraction of the filtered laser light. Circuitry coupled to the detector and the laser can tune the tunable laser to set a signal from the detector to a specified value corresponding to a specified wavelength in the spectral profile, and thereby adjust the selectable wavelength of the tunable laser to match the specified wavelength. In some examples, the optical system can include a polarization rotator, and can use polarization to separate incident light from return light.Type: ApplicationFiled: February 19, 2020Publication date: June 11, 2020Inventors: Brian R. Koch, Jonathan Edgar Roth
-
Patent number: 10620390Abstract: Described herein are photonic systems and devices including a optical interface unit disposed on a bottom side of a photonic integrated circuit (PIC) to receive light from an emitter of the PIC. A top side of the PIC includes a flip-chip interface for electrically coupling the PIC to an organic substrate via the top side. An alignment feature corresponding to the emitter is formed with the emitter to be offset by a predetermined distance value; because the emitter and the alignment feature are formed using a shared processing operation, the offset (i.e., predetermined distance value) may be precise and consistent across similarly produced PICs. The PIC comprises a processing feature to image the alignment feature from the bottom side (e.g., a hole). A heat spreader layer surrounds the optical interface unit and is disposed on the bottom side of the PIC to spread heat from the PIC.Type: GrantFiled: April 1, 2019Date of Patent: April 14, 2020Assignee: Aurrion, Inc.Inventors: Gregory Alan Fish, Brian R. Koch
-
Patent number: 10608402Abstract: An optical system can lock a wavelength of a tunable laser to a specified wavelength of a temperature-insensitive spectral profile of a spectral filter. In some examples, the spectral filter, such as a Fabry-Perot filter, can have a temperature-insensitive peak wavelength and increasing attenuation at wavelengths away from the peak wavelength. The spectral filter can spectrally filter the laser light to form filtered laser light. A detector can detect at least a fraction of the filtered laser light. Circuitry coupled to the detector and the laser can tune the tunable laser to set a signal from the detector to a specified value corresponding to a specified wavelength in the spectral profile, and thereby adjust the selectable wavelength of the tunable laser to match the specified wavelength. In some examples, the optical system can include a polarization rotator, and can use polarization to separate incident light from return light.Type: GrantFiled: August 5, 2019Date of Patent: March 31, 2020Assignee: Aurrion, Inc.Inventors: Brian R. Koch, Jonathan Edgar Roth
-
Publication number: 20190356107Abstract: An optical system can lock a wavelength of a tunable laser to a specified wavelength of a temperature-insensitive spectral profile of a spectral filter. In some examples, the spectral filter, such as a Fabry-Perot filter, can have a temperature-insensitive peak wavelength and increasing attenuation at wavelengths away from the peak wavelength. The spectral filter can spectrally filter the laser light to form filtered laser light. A detector can detect at least a fraction of the filtered laser light. Circuitry coupled to the detector and the laser can tune the tunable laser to set a signal from the detector to a specified value corresponding to a specified wavelength in the spectral profile, and thereby adjust the selectable wavelength of the tunable laser to match the specified wavelength. In some examples, the optical system can include a polarization rotator, and can use polarization to separate incident light from return light.Type: ApplicationFiled: August 5, 2019Publication date: November 21, 2019Inventors: Brian R. Koch, Jonathan Edgar Roth
-
Patent number: 10436981Abstract: The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.Type: GrantFiled: February 13, 2019Date of Patent: October 8, 2019Assignee: Aurrion, Inc.Inventors: Jared Bauters, Brian R. Koch, Jonathan Edgar Roth, Gregory Alan Fish
-
Patent number: 10411430Abstract: An optical system can lock a wavelength of a tunable laser to a specified wavelength of a temperature-insensitive spectral profile of a spectral filter. In some examples, the spectral filter, such as a Fabry-Perot filter, can have a temperature-insensitive peak wavelength and increasing attenuation at wavelengths away from the peak wavelength. The spectral filter can spectrally filter the laser light to form filtered laser light. A detector can detect at least a fraction of the filtered laser light. Circuitry coupled to the detector and the laser can tune the tunable laser to set a signal from the detector to a specified value corresponding to a specified wavelength in the spectral profile, and thereby adjust the selectable wavelength of the tunable laser to match the specified wavelength. In some examples, the optical system can include a polarization rotator, and can use polarization to separate incident light from return light.Type: GrantFiled: April 19, 2016Date of Patent: September 10, 2019Assignee: Aurrion, Inc.Inventors: Brian R. Koch, Jonathan Edgar Roth