Patents by Inventor Brian R. SCHAEFER

Brian R. SCHAEFER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11536310
    Abstract: A precision adjustment fastener mechanism comprises a base, a platform, and a locking push-pull fastener assembly. The base has a first aperture and the platform has a second aperture. The fastener assembly is disposed within the second aperture. The fastener assembly comprises a clamping fastener having a portion positioned in the first aperture, a sleeve having a third aperture extending along an axis of the sleeve. The clamping fastener is positioned within the third aperture. The sleeve comprises a first portion moveable relative to a second portion along the axis. The first portion and the second portion each comprise outer threads. An axial displacement portion separates the first and second portions and transmits a torque between the first and second portions. The axial displacement portion facilitates movement of the first and second portions to bind threads of the first and second portions with the threads of the platform.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: December 27, 2022
    Assignee: Raytheon Company
    Inventors: Robert D. Schaefer, Andrew L. Bullard, Brian R. Schaefer, Michael C. Barr
  • Publication number: 20210190126
    Abstract: A precision adjustment fastener mechanism comprises a base, a platform, and a locking push-pull fastener assembly. The base has a first aperture and the platform has a second aperture. The fastener assembly is disposed within the second aperture. The fastener assembly comprises a clamping fastener having a portion positioned in the first aperture, a sleeve having a third aperture extending along an axis of the sleeve. The clamping fastener is positioned within the third aperture. The sleeve comprises a first portion moveable relative to a second portion along the axis. The first portion and the second portion each comprise outer threads. An axial displacement portion separates the first and second portions and transmits a torque between the first and second portions.
    Type: Application
    Filed: December 18, 2019
    Publication date: June 24, 2021
    Inventors: Robert D. Schaefer, Andrew L. Bullard, Brian R. Schaefer, Michael C. Barr
  • Patent number: 10520227
    Abstract: A pulse-tube cryocooler includes a compressor piston that is axially aligned with a pulse tube. The compressor piston is an annular piston that has a central hole around its axis. An inertance tube, connected to one end of the pulse tube, runs through the central hole in the compressor piston. The cryocooler also includes a balancer that moves in opposition to the compressor piston, to offset the forces in moving the compressor piston. The balancer may also be axially aligned with the pulse tube, the annular piston, and the inertance tube. The alignment of the compressor piston, the pulse tube, and the inertance tube aligns the forces produced by movement of fluid within the cryocooler.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: December 31, 2019
    Assignee: Raytheon Company
    Inventors: Ryan Yates, Theodore J. Conrad, Brian R. Schaefer
  • Patent number: 10234075
    Abstract: A system includes a device, a support structure, and a flexure bearing configured to connect the device to the support structure. The flexure bearing includes an outer hub and an inner hub, where the hubs are configured to be secured to the support structure and to the device. The flexure bearing also includes multiple sets of flexure arms connecting the outer hub and the inner hub, where each set of flexure arms includes symmetric flexure arms. The flexure bearing further includes multiple bridges, where each bridge connects one of the flexure arms in one set of flexure arms to one of the flexure arms in an adjacent set of flexure arms.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: March 19, 2019
    Assignee: Raytheon Company
    Inventors: Theodore J. Conrad, Robert D. Schaefer, Andrew L. Bullard, Brian R. Schaefer, Ryan Yates
  • Publication number: 20190078814
    Abstract: A pulse-tube cryocooler includes a compressor piston that is axially aligned with a pulse tube. The compressor piston is an annular piston that has a central hole around its axis. An inertance tube, connected to one end of the pulse tube, runs through the central hole in the compressor piston. The cryocooler also includes a balancer that moves in opposition to the compressor piston, to offset the forces in moving the compressor piston. The balancer may also be axially aligned with the pulse tube, the annular piston, and the inertance tube. The alignment of the compressor piston, the pulse tube, and the inertance tube aligns the forces produced by movement of fluid within the cryocooler. This makes it easier to cancel mechanical forces produced by the cryocooler in operation, since all (or most) of the forces are in a single axial direction.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 14, 2019
    Inventors: Ryan Yates, Theodore J. Conrad, Brian R. Schaefer
  • Publication number: 20180224059
    Abstract: A system includes a device, a support structure, and a flexure bearing configured to connect the device to the support structure. The flexure bearing includes an outer hub and an inner hub, where the hubs are configured to be secured to the support structure and to the device. The flexure bearing also includes multiple sets of flexure arms connecting the outer hub and the inner hub, where each set of flexure arms includes symmetric flexure arms. The flexure bearing further includes multiple bridges, where each bridge connects one of the flexure arms in one set of flexure arms to one of the flexure arms in an adjacent set of flexure arms.
    Type: Application
    Filed: February 7, 2017
    Publication date: August 9, 2018
    Inventors: Theodore J. Conrad, Robert D. Schaefer, Andrew L. Bullard, Brian R. Schaefer, Ryan Yates
  • Patent number: 9488389
    Abstract: An apparatus includes a regenerator configured to transfer heat to a fluid and to absorb heat from the fluid as the fluid flows between a warm end and a cold end of a cryocooler. The regenerator includes an anisotropic thermal layer configured to reduce a flow of heat axially along the regenerator and to spread the absorbed heat radially or laterally in a plane of the anisotropic thermal layer. The anisotropic thermal layer includes at least one allotropic form of carbon. The anisotropic thermal layer could have a higher radial or lateral thermal conductivity and a lower axial thermal conductivity. The anisotropic thermal layer could include carbon nanotubes and/or graphene. The regenerator could include multiple anisotropic thermal layers that divide the regenerator into multiple segments, where the anisotropic thermal layers are configured to reduce heat transfer between adjacent segments of the regenerator.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: November 8, 2016
    Assignee: Raytheon Company
    Inventors: Theodore J. Conrad, Michael J. Ellis, Lowell A. Bellis, James R. Chow, Brian R. Schaefer, Troy T. Matsuoka
  • Patent number: 9285073
    Abstract: A system includes a device, a support structure, and a flexure bearing configured to connect the device to the support structure. The flexure bearing includes an outer hub and an inner hub, where the hubs are configured to be secured to the support structure and to the device. The flexure bearing also includes multiple sets of flexure arms connecting the outer and inner hubs. Each set of flexure arms includes symmetric flexure arms. The flexure bearing could include three sets of flexure arms positioned radially around a central axis of the flexure bearing and having a spacing of about 120°. Each flexure arm can follow a substantially curved path between the outer hub and the inner hub. The symmetric flexure arms in each set can be configured such that twisting of one flexure arm in one set is substantially counteracted by twisting of another flexure arm in that set.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: March 15, 2016
    Assignee: Raytheon Company
    Inventors: Michael J. Ellis, Lowell A. Bellis, Brian R. Schaefer, Robert D. Schaefer, Marco K. Kwan
  • Publication number: 20150192329
    Abstract: An apparatus includes a regenerator configured to transfer heat to a fluid and to absorb heat from the fluid as the fluid flows between a warm end and a cold end of a cryocooler. The regenerator includes an anisotropic thermal layer configured to reduce a flow of heat axially along the regenerator and to spread the absorbed heat radially or laterally in a plane of the anisotropic thermal layer. The anisotropic thermal layer includes at least one allotropic form of carbon. The anisotropic thermal layer could have a higher radial or lateral thermal conductivity and a lower axial thermal conductivity. The anisotropic thermal layer could include carbon nanotubes and/or graphene. The regenerator could include multiple anisotropic thermal layers that divide the regenerator into multiple segments, where the anisotropic thermal layers are configured to reduce heat transfer between adjacent segments of the regenerator.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 9, 2015
    Applicant: Raytheon Company
    Inventors: Theodore J. Conrad, Michael J. Ellis, Lowell A. Bellis, James R. Chow, Brian R. Schaefer, Troy T. Matsuoka
  • Publication number: 20150041619
    Abstract: A system includes a device, a support structure, and a flexure bearing configured to connect the device to the support structure. The flexure bearing includes an outer hub and an inner hub, where the hubs are configured to be secured to the support structure and to the device. The flexure bearing also includes multiple sets of flexure arms connecting the outer and inner hubs. Each set of flexure arms includes symmetric flexure arms. The flexure bearing could include three sets of flexure arms positioned radially around a central axis of the flexure bearing and having a spacing of about 120°. Each flexure arm can follow a substantially curved path between the outer hub and the inner hub. The symmetric flexure arms in each set can be configured such that twisting of one flexure arm in one set is substantially counteracted by twisting of another flexure arm in that set.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 12, 2015
    Applicant: Raytheon Company
    Inventors: Michael J. ELLIS, Lowell A. BELLIS, Brian R. SCHAEFER, Robert D. SCHAEFER, Marco K. KWAN