Patents by Inventor Brian R. Smith

Brian R. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11972086
    Abstract: A system for automatically increasing a capacity of a virtual space in a virtual world may include a processor and a module operating on the processor for detecting an attempt by an avatar to enter a virtual space in a virtual world. The system may also include another module for determining if an allowable number of avatars is currently in the virtual space. The allowable number of avatars may be determined by at least a capacity of a server that is hosting the virtual space. Another module may be provided for increasing a capacity of the virtual space when the allowable number of avatars is currently in the virtual space. Increasing the capacity of the virtual space may include spawning a replicate new virtual space on a different server in response to the capacity of the server that is hosting the virtual space reaching the allowable number of avatars.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: April 30, 2024
    Assignee: Activision Publishing, Inc.
    Inventors: Peter F. Haggar, Brian R. Bokor, Daniel E. House, William B. Nicol, II, Andrew B. Smith, Luis J. Ostdiek
  • Patent number: 11963691
    Abstract: A surgical instrument, has an end effector that includes an ultrasonic blade, and a clamp arm that moves relative to the ultrasonic blade from an opened position toward an intermediate position and a closed position. The clamp arm is offset from the ultrasonic blade to define a predetermined gap in the intermediate position between the opened position and the closed position. A clamp arm actuator connects to the clamp arm and moves from an opened configuration to a closed configuration to direct the clamp arm from the opened position toward the intermediate position and the closed position. A spacer connects with the clamp arm to inhibit movement of the clamp arm from the intermediate position toward the closed position for maintaining the predetermined gap between the clamp arm and the ultrasonic blade.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: April 23, 2024
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Joseph Dennis, Geni M. Giannotti, Bryce L. Heitman, Timothy S. Holland, Joseph E. Hollo, Andrew Kolpitcke, Amy M. Krumm, Jason R. Lesko, Matthew C. Miller, David A. Monroe, Ion V. Nicolaescu, Rafael J. Ruiz Ortiz, Matthew S. Schneider, Richard C. Smith, Shawn C. Snyder, Sarah A. Worthington, Monica L. Rivard, Fajian Zhang
  • Patent number: 11933350
    Abstract: A joint for a composite frame includes a first composite rod, a first shell abutting the first composite rod, a second shell abutting the first composite rod and disposed opposite the first shell relative to the first composite rod. The first and second shells are joined together such that composite rod is fixed therebetween. A method of forming joints of composite frame includes forming a composite frame by interconnecting a plurality of composite rods formed by an Automated Fiber Placement (AFP) manufacturing method around a mandrel, applying a first shell to the plurality of composite rods at a first location where composite rods are interconnected, applying a second shell at the first location opposite the first shell relative to the composite rods, and joining the first and second shells together with the composite rods at the first location disposed between the first and second shells.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: March 19, 2024
    Assignee: Goodrich Corporation
    Inventors: Mark R. Gurvich, Brian J. Smith
  • Publication number: 20240084056
    Abstract: Elastomeric polyolefin-based ionomers and methods for making same. The ionomers can include a copolymer comprising: C2-C60 ?-olefin monomer units; optional C2-C60 ?-olefin comonomer units different than the monomer units; optional diene units; and about 0.1 wt % to about 20 wt % metal alkenyl units, based on the weight of the copolymer, wherein the metal alkenyl units have the formula —R(A?)—, wherein R is an alkyl group containing 2 to 10 carbon atoms, and A? is an anionic group. The copolymer can further include one or more metal cations derived from the group consisting of alkali metals, alkaline earth metals, group 3-12 metals, group 13-16 metals, and combination(s) thereof. The ionomer has a glass transition temperature of ?60° C. to 5° C., and a weight average (Mw) of 50 to 5,000 kg/mol.
    Type: Application
    Filed: December 8, 2021
    Publication date: March 14, 2024
    Inventors: Tzu-Pin Lin, Carlos R. Lopez-Barron, Avery R. Smith, Brian J. Rohde, Alex E. Carpenter, Matthew W. Holtcamp, Jo Ann M. Canich, John R. Hagadorn
  • Publication number: 20240085949
    Abstract: An apparatus can include a display, a facial interface, and a connector between the display and the facial interface. The facial interface can at least translate or rotate relative to the display via the connector.
    Type: Application
    Filed: September 1, 2023
    Publication date: March 14, 2024
    Inventors: Darshan R. Kasar, Samuel G. Smith, Jonathan M. Anderson, Erin M. Bosch, Muhammad F. Hossain, Liam R. Martinez, Andrew Gallaher, Ian A. Guy, Brian Baillargeon, Keith W. Kirkwood, Timothy J. Rasmussen
  • Patent number: 11614106
    Abstract: In one embodiment, a method for reducing drag includes forming a smooth surface on a first portion of a physical object. The method also includes forming periodic riblets on a second portion of the physical object. The method further includes generating a flow over the periodic riblets of the second portion of the physical object and over the smooth surface of the first portion of the physical object. The second portion of the physical object is adjacent to the first portion of the physical object. Each peak of each riblet of the periodic riblets of the second portion of the physical object is located above a plane of the smooth surface of the first portion of the physical object. Each valley between adjacent riblets of the periodic riblets of the second portion of the physical object is located below the plane of the smooth surface of the first portion of the physical object. A length of each riblet of the periodic riblets runs parallel to a direction of the flow.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: March 28, 2023
    Assignee: Lockheed Martin Corporation
    Inventors: Brian R. Smith, Patrick J. Yagle, Paul Douglas McClure
  • Publication number: 20210231142
    Abstract: In one embodiment, a method for reducing drag includes forming a smooth surface on a first portion of a physical object. The method also includes forming periodic riblets on a second portion of the physical object. The second portion of the physical object is adjacent to the first portion of the physical object. Each riblet of the periodic riblets of the second portion of the physical object is depressed below a plane of the smooth surface of the first portion of the physical object. The method further includes generating a flow over the periodic riblets of the second portion of the physical object and over the smooth surface of the first portion of the physical object. A length of each riblet of the periodic riblets runs parallel to a direction of the flow.
    Type: Application
    Filed: August 21, 2019
    Publication date: July 29, 2021
    Inventors: Brian R. Smith, Patrick James Yagle, Paul Douglas McClure
  • Publication number: 20210231141
    Abstract: In one embodiment, a method for reducing drag includes forming first periodic riblets on a smooth surface of a physical object and forming second periodic riblets on the smooth surface of the physical object. The method further includes generating a flow over the first and second periodic riblets of the physical object. Each first periodic riblet comprises a first transition region at a first end of each first periodic riblet and a second transition region at a second end of each first periodic riblet. Each second periodic riblet comprises a first transition region at a first end of each second periodic riblet and a second transition region at a second end of each second periodic riblet. Each second transition region at the second end of each first periodic riblet overlaps each first transition region at the first end of each second periodic riblet. A length of each riblet of the first and second periodic riblets runs parallel to a direction of the flow.
    Type: Application
    Filed: August 21, 2019
    Publication date: July 29, 2021
    Inventors: Brian R. Smith, Patrick J. Yagle, Paul Douglas McClure
  • Publication number: 20210054859
    Abstract: In one embodiment, a method for reducing drag includes forming a smooth surface on a first portion of a physical object. The method also includes forming periodic riblets on a second portion of the physical object. The method further includes generating a flow over the periodic riblets of the second portion of the physical object and over the smooth surface of the first portion of the physical object. The second portion of the physical object is adjacent to the first portion of the physical object. Each peak of each riblet of the periodic riblets of the second portion of the physical object is located above a plane of the smooth surface of the first portion of the physical object. Each valley between adjacent riblets of the periodic riblets of the second portion of the physical object is located below the plane of the smooth surface of the first portion of the physical object. A length of each riblet of the periodic riblets runs parallel to a direction of the flow.
    Type: Application
    Filed: August 21, 2019
    Publication date: February 25, 2021
    Inventors: Brian R. Smith, Patrick J. Yagle, Paul Douglas McClure
  • Patent number: 10880108
    Abstract: Systems and methods for multicasting a dataset to a fleet of vehicles by a deadline based on respective transit schedules of vehicles in the fleet are disclosed. Based on the vehicle transit schedules, a time segment may be determined for delivering at least a portion of the dataset to at least a subset of the vehicles in the fleet. The determination may be based on a maximum number of fleet vehicles that are scheduled to be simultaneously in transit. The determination may be additionally or alternatively based on an available transmission bandwidth, a time segment duration, a minimum transit duration, and/or other criteria. A multicast transmission including at least a portion of the data set is initiated based on the determination. Multiple multicasts and unicasts may achieve the complete transmission of the entire dataset to the entire fleet of vehicles prior to a deadline.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: December 29, 2020
    Assignee: GOGO BUSINESS AVIATION LLC
    Inventors: Tyrone D. Bekiares, Brian R. Smith, Sajit Sasi, William A. Kelleher
  • Patent number: 10459886
    Abstract: Techniques and mechanisms described herein facilitate the transmission of a data stream from a client device to a networked storage system. According to various embodiments, a fingerprint for a data chunk may be identified by applying a hash function to the data chunk via a processor. The data chunk may be determined by parsing a data stream at the client device. A determination may be made as to whether the data chunk is stored in a chunk file repository at the client device. A block map update request message including information for updating a block map may be transmitted to a networked storage system via a network. The block map may identify a designated memory location at which the chunk is stored at the networked storage system.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: October 29, 2019
    Assignee: QUEST SOFTWARE INC.
    Inventors: Tarun K. Tripathy, Brian R. Smith, Abhijit S. Dinkar
  • Patent number: 10200424
    Abstract: A real-time media stream, multicast by a remote computing system, is received by an on-board system of a vehicle. While being received, the real-time media stream is packaged into time-delineated media segments that are input to a buffer. One or more missing segments are identified after a signal loss event (e.g., a satellite handoff), and a request for the missing segment(s) is/are caused to be sent to the remote computing system. The missing segment(s) is/are received from the remote computing system via a unicast transmission, and inserted into the buffer in sequence with the time-delineated media segments. The buffered real-time media stream, including the inserted segment(s), is caused to be provided to one or more electronic devices on-board the vehicle. In this manner, the real-time media stream may be seamlessly delivered to the on-board electronic device(s) despite a loss of connectivity due to the signal loss event.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: February 5, 2019
    Assignee: GOGO LLC
    Inventors: Tyrone D. Bekiares, Brian R. Smith, Sajit Sasi, William A. Kelleher
  • Publication number: 20180367324
    Abstract: Systems and methods for multicasting a dataset to a fleet of vehicles by a deadline based on respective transit schedules of vehicles in the fleet are disclosed. Based on the vehicle transit schedules, a time segment may be determined for delivering at least a portion of the dataset to at least a subset of the vehicles in the fleet. The determination may be based on a maximum number of fleet vehicles that are scheduled to be simultaneously in transit. The determination may be additionally or alternatively based on an available transmission bandwidth, a time segment duration, a minimum transit duration, and/or other criteria. A multicast transmission including at least a portion of the data set is initiated based on the determination. Multiple multicasts and unicasts may achieve the complete transmission of the entire dataset to the entire fleet of vehicles prior to a deadline.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Inventors: Tyrone D. Bekiares, Brian R. Smith, Sajit Sasi, William A. Kelleher
  • Publication number: 20180357217
    Abstract: Techniques and mechanisms described herein facilitate the transmission of a data stream to a networked storage system. According to various embodiments, a data stream may be parsed to identify one or more uncompressed data chunks for transmission to a networked storage system. Each uncompressed data chunk may be compressed to produce a respective compressed data chunk. Each compressed data chunk may be transmitted to the networked storage system via a network for storage at the networked storage system.
    Type: Application
    Filed: June 5, 2018
    Publication date: December 13, 2018
    Inventors: Tarun K. Tripathy, Brian R. Smith, Abhijit S. Dinkar
  • Patent number: 9990352
    Abstract: Techniques and mechanisms described herein facilitate the transmission of a data stream to a networked storage system. According to various embodiments, a data stream may be parsed to identify one or more uncompressed data chunks for transmission to a networked storage system. Each uncompressed data chunk may be compressed to produce a respective compressed data chunk. Each compressed data chunk may be transmitted to the networked storage system via a network for storage at the networked storage system.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: June 5, 2018
    Assignee: QUEST SOFTWARE INC.
    Inventors: Tarun K. Tripathy, Brian R. Smith, Abhijit S. Dinkar
  • Patent number: 9984093
    Abstract: Techniques and mechanisms described herein facilitate the transmission of a data stream to a networked storage system. According to various embodiments, a determination may be made as to whether an amount of available computing resources at a client device meets or exceeds a computing resource availability threshold at the client device. A processing operation on a data stream may be performed at the client device to produce a pre-processed data stream when the amount of available computing resources meets or exceeds the computing resource availability threshold. The pre-processed data stream may be transmitted to a networked storage system for storage via a network. The networked storage system may be operable to store deduplicated data for retrieval via the network.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: May 29, 2018
    Assignee: Quest Software Inc.
    Inventors: Tarun K. Tripathy, Brian R. Smith, Abhijit S. Dinkar
  • Publication number: 20180091567
    Abstract: A real-time media stream, multicast by a remote computing system, is received by an on-board system of a vehicle. While being received, the real-time media stream is packaged into time-delineated media segments that are input to a buffer. One or more missing segments are identified after a signal loss event (e.g., a satellite handoff), and a request for the missing segment(s) is/are caused to be sent to the remote computing system. The missing segment(s) is/are received from the remote computing system via a unicast transmission, and inserted into the buffer in sequence with the time-delineated media segments. The buffered real-time media stream, including the inserted segment(s), is caused to be provided to one or more electronic devices on-board the vehicle. In this manner, the real-time media stream may be seamlessly delivered to the on-board electronic device(s) despite a loss of connectivity due to the signal loss event.
    Type: Application
    Filed: September 28, 2016
    Publication date: March 29, 2018
    Applicant: GOGO LLC
    Inventors: Tyrone D. Bekiares, Brian R. Smith, Sajit Sasi, William A. Kelleher
  • Patent number: 9917894
    Abstract: Techniques and mechanisms described herein facilitate the acceleration of data transfer protocols via client side de-duplication techniques for transmitting data from a client device to a networked storage system while maintaining protocol usage characteristics. while preserving the same presentation semantics to the users. A data chunk may be determined at a client device by parsing a data stream generated at the client device via a network storage protocol. A fingerprint for the data chunk may be identified by applying a hash function to the data chunk. A determination may be made as to whether the chunk is stored at a networked storage system by transmitting the fingerprint to the networked storage system via a network. The client device may transmit a block map update request message including information for updating a block map to the networked storage system.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: March 13, 2018
    Assignee: Quest Software Inc.
    Inventors: Tarun K. Tripathy, Brian R. Smith, Abhijit S. Dinkar
  • Patent number: 9330944
    Abstract: An implantable bio-compatible integrated circuit device and methods for manufacture thereof are disclosed herein. The device includes a substrate having a recess. An input/output device including at least one bio-compatible electrical contact is coupled to the substrate in the recess. A layer of hermetic bio-compatible, hermetic insulator material is deposited on a portion of the input/output device. An encapsulating layer of bio-compatible material encapsulates at least a portion of the implantable device, including the input/output device. At least one bio-compatible electrical contact of the input/output device is then exposed. The encapsulating layer and the layer of bio-compatible, hermetic insulator material form a hermetic seal around the at least one exposed bio-compatible electrical contact.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: May 3, 2016
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Brian R. Smith, Tirunelveli S. Sriram, Bryan L. McLaughlin
  • Publication number: 20160086824
    Abstract: An implantable bio-compatible integrated circuit device and methods for manufacture thereof are disclosed herein. The device includes a substrate having a recess. An input/output device including at least one bio-compatible electrical contact is coupled to the substrate in the recess. A layer of hermetic bio-compatible, hermetic insulator material is deposited on a portion of the input/output device. An encapsulating layer of bio-compatible material encapsulates at least a portion of the implantable device, including the input/output device. At least one bio-compatible electrical contact of the input/output device is then exposed. The encapsulating layer and the layer of bio-compatible, hermetic insulator material form a hermetic seal around the at least one exposed bio-compatible electrical contact.
    Type: Application
    Filed: December 4, 2015
    Publication date: March 24, 2016
    Inventors: Brian R. Smith, Tirunelveli S. Sriram, Bryan L. McLaughlin