Patents by Inventor Brian R. Sundlof

Brian R. Sundlof has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9472520
    Abstract: A multi-layer pillar and method of fabricating the same is provided. The multi-layer pillar is used as an interconnect between a chip and substrate. The pillar has at least one low strength, high ductility deformation region configured to absorb force imposed during chip assembly and thermal excursions.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: October 18, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Virendra R. Jadhav, Krystyna W. Semkow, Kamalesh K. Srivastava, Brian R. Sundlof
  • Patent number: 9263363
    Abstract: The present invention relates generally to thermally-conductive pastes for use with integrated circuits, and particularly, but not by way of limitation, to self-orienting microplates of graphite.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: February 16, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Gareth Hougham, Paul A. Lauro, Brian R. Sundlof, Jeffrey D. Gelorme
  • Patent number: 9111816
    Abstract: A multi-layer pillar is provided. The multi-layer pillar is used as an interconnect between a chip and substrate. The pillar has at least one low strength, high ductility deformation region configured to absorb force imposed during chip assembly and thermal excursions.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: August 18, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Virendra R. Jadhav, Krystyna W. Semkow, Kamalesh K. Srivastava, Brian R. Sundlof
  • Patent number: 9018760
    Abstract: A solder interconnect structure is provided with non-wettable sidewalls and methods of manufacturing the same. The method includes forming a nickel or nickel alloy pillar on an underlying surface. The method further includes modifying the sidewall of the nickel or nickel alloy pillar to prevent solder wetting on the sidewall.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: April 28, 2015
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Raschid J. Bezama, Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, David L. Questad, Wolfgang Sauter, Timothy D. Sullivan, Brian R. Sundlof
  • Publication number: 20150054152
    Abstract: A multi-layer pillar and method of fabricating the same is provided. The multi-layer pillar is used as an interconnect between a chip and substrate.
    Type: Application
    Filed: October 29, 2014
    Publication date: February 26, 2015
    Inventors: Virendra R. JADHAV, Krystyna W. SEMKOW, Kamalesh K. SRIVASTAVA, Brian R. SUNDLOF
  • Patent number: 8910853
    Abstract: In one embodiment of the present invention, inert nano-sized particles having dimensions from 1 nm to 1,000 nm are added into a solder ball. The inert nano-sized particles may comprise metal oxides, metal nitrides, metal carbides, metal borides, etc. The inert nano-sized particles may be a single compound, or may be a metallic material having a coating of a different material. In another embodiment of the present invention, a small quantity of at least one elemental metal that forms stable high melting intermetallic compound with tin is added to a solder ball. The added at least one elemental metal forms precipitates of intermetallic compounds with tin, which are dispersed as fine particles in the solder.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Alexandre Blander, Peter J. Brofman, Donald W. Henderson, Gareth G. Hougham, Hsichang Liu, Eric D. Perfecto, Srinivasa S.N. Reddy, Krystyna W. Semkow, Kamalesh K. Srivastava, Brian R. Sundlof, Julien Sylvestre, Renee L. Weisman
  • Publication number: 20140077367
    Abstract: A solder interconnect structure is provided with non-wettable sidewalls and methods of manufacturing the same. The method includes forming a nickel or nickel alloy pillar on an underlying surface. The method further includes modifying the sidewall of the nickel or nickel alloy pillar to prevent solder wetting on the sidewall.
    Type: Application
    Filed: November 19, 2013
    Publication date: March 20, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles L. Arvin, Raschid J. Bezama, Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, David L. Questad, Wolfgang Sauter, Timothy D. Sullivan, Brian R. Sundlof
  • Publication number: 20140038362
    Abstract: The present invention relates generally to thermally-conductive pastes for use with integrated circuits, and particularly, but not by way of limitation, to self-orienting microplates of graphite.
    Type: Application
    Filed: October 7, 2013
    Publication date: February 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Gareth Hougham, Paul A. Lauro, Brian R. Sundlof, Jeffrey D. Gelorme
  • Patent number: 8637392
    Abstract: A solder interconnect structure is provided with non-wettable sidewalls and methods of manufacturing the same. The method includes forming a nickel or nickel alloy pillar on an underlying surface. The method further includes modifying the sidewall of the nickel or nickel alloy pillar to prevent solder wetting on the sidewall.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Raschid J. Bezama, Timothy H. Daubenspeck, Jeffrey P. Gambino, Christopher D. Muzzy, David L. Questad, Wolfgang Sauter, Timothy D. Sullivan, Brian R. Sundlof
  • Patent number: 8604623
    Abstract: The present invention relates generally to thermally-conductive pastes for use with integrated circuits, and particularly, but not by way of limitation, to self-orienting microplates of graphite.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: December 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Gareth Hougham, Paul A. Lauro, Brian R. Sundlof, Jeffrey D. Gelorme
  • Publication number: 20130284495
    Abstract: In one embodiment of the present invention, inert nano-sized particles having dimensions from 1 nm to 1,000 nm are added into a solder ball. The inert nano-sized particles may comprise metal oxides, metal nitrides, metal carbides, metal borides, etc. The inert nano-sized particles may be a single compound, or may be a metallic material having a coating of a different material. In another embodiment of the present invention, a small quantity of at least one elemental metal that forms stable high melting intermetallic compound with tin is added to a solder ball. The added at least one elemental metal forms precipitates of intermetallic compounds with tin, which are dispersed as fine particles in the solder.
    Type: Application
    Filed: July 1, 2013
    Publication date: October 31, 2013
    Inventors: Charles L. Arvin, Alexandre Blander, Peter J. Brofman, Donald W. Henderson, Gareth G. Hougham, Hsichang Liu, Eric D. Perfecto, Srinivasa S.N. Reddy, Krystyna W. Semkow, Kamalesh K. Srivastava, Brian R. Sundlof, Julien Sylvestre, Renee L. Weisman
  • Patent number: 8493746
    Abstract: In one embodiment of the present invention, inert nano-sized particles having dimensions from 1 nm to 1,000 nm are added into a solder ball. The inert nano-sized particles may comprise metal oxides, metal nitrides, metal carbides, metal borides, etc. The inert nano-sized particles may be a single compound, or may be a metallic material having a coating of a different material. In another embodiment of the present invention, a small quantity of at least one elemental metal that forms stable high melting intermetallic compound with tin is added to a solder ball. The added at least one elemental metal forms precipitates of intermetallic compounds with tin, which are dispersed as fine particles in the solder.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Charles L. Arvin, Alexandre Blander, Peter J. Brofman, Donald W. Henderson, Gareth G. Hougham, Hsichang Liu, Eric D. Perfecto, Srinivasa S. N. Reddy, Krystyna W. Semkow, Kamalesh K. Srivastava, Brian R. Sundlof, Julien Sylvestre, Renee L. Weisman
  • Publication number: 20130016479
    Abstract: The present invention relates generally to thermally-conductive pastes for use with integrated circuits, and particularly, but not by way of limitation, to self-orienting microplates of graphite.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 17, 2013
    Applicant: International Business Machines Corporation
    Inventors: Gareth Hougham, Paul A. Lauro, Brian R. Sundlof, Jeffrey D. Gelorme
  • Publication number: 20120312447
    Abstract: A multi-layer pillar and method of fabricating the same is provided. The multi-layer pillar is used as an interconnect between a chip and substrate. The pillar has at least one low strength, high ductility deformation region configured to absorb force imposed during chip assembly and thermal excursions.
    Type: Application
    Filed: August 21, 2012
    Publication date: December 13, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Virendra R. JADHAV, Krystyna W. SEMKOW, Kamalesh K. SRIVASTAVA, Brian R. SUNDLOF
  • Patent number: 8293587
    Abstract: A multi-layer pillar and method of fabricating the same is provided. The multi-layer pillar is used as an interconnect between a chip and substrate. The pillar has at least one low strength, high ductility deformation region configured to absorb force imposed during chip assembly and thermal excursions.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: October 23, 2012
    Assignee: International Business Machines Corporation
    Inventors: Virendra R Jadhav, Krystyna W Semkow, Kamalesh K Srivastava, Brian R Sundlof
  • Patent number: 8268282
    Abstract: The present invention relates generally to thermally-conductive pastes for use with integrated circuits, and particularly, but not by way of limitation, to self-orienting microplates of graphite.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: September 18, 2012
    Assignee: International Business Machines Corporation
    Inventors: Gareth Hougham, Paul A. Lauro, Brian R. Sundlof, Jeffrey D. Gelorme
  • Publication number: 20120211159
    Abstract: The present invention relates generally to thermally-conductive pastes for use with integrated circuits, and particularly, but not by way of limitation, to self-orienting microplates of graphite.
    Type: Application
    Filed: June 5, 2007
    Publication date: August 23, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gareth Hougham, Paul A. Lauro, Brian R. Sundlof, Jeffrey D. Gelorme
  • Publication number: 20120202343
    Abstract: A metallic adhesion layer is formed on a last level metal plate exposed in an opening of a passivation layer. A Ni—Cu alloy in which the weight percentage of Ni is from about 50% to about 70% is deposited by sputtering onto the metallic adhesion layer to form an underbump metallic layer. Optionally, a wetting layer comprising Cu or Au may be deposited by sputtering. A C4 ball is applied to a surface of the underbump metallic layer comprising the Ni—Cu alloy or the wetting layer for C4 processing. The sputter deposition of the Ni—Cu alloy offers economic advantages relative to known methods in the art since the Ni—Cu alloy in the composition of the present invention is non-magnetic and easy to sputter, and the consumption of the inventive Ni—Cu alloy is limited during C4 processing.
    Type: Application
    Filed: April 17, 2012
    Publication date: August 9, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Luc Bélanger, Srinivasa S.N. Reddy, Brian R. Sundlof
  • Publication number: 20120181071
    Abstract: A multi-layer pillar is provided. The multi-layer pillar is used as an interconnect between a chip and substrate.
    Type: Application
    Filed: March 27, 2012
    Publication date: July 19, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Virendra R. JADHAV, Krystyna W. SEMKOW, Kamalesh K. SRIVASTAVA, Brian R. SUNDLOF
  • Patent number: 8197612
    Abstract: Semiconductor packaging techniques are provided which optimize metallurgical properties of a joint using dissimilar solders. A solder composition for Controlled Collapse Chip Connection processing includes a combination of a tin based lead free solder component designed for a chip and a second solder component designed for a laminate. The total concentration of module Ag after reflow is less than 1.9% by weight. A method of manufacturing a solder component is also provided.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: June 12, 2012
    Assignee: International Business Machines Corporation
    Inventors: James A Busby, Minhua Lu, Valerie A Oberson, Eric D Perfecto, Kamalesh K Srivastava, Brian R Sundlof, Julien Sylvestre, Renee L Weisman