Patents by Inventor Brian Reeder

Brian Reeder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090112081
    Abstract: Methods are disclosed for calculating a fat fraction corrected for noise bias of one or more voxels of interest using a magnetic resonance imaging (MRI) system. A plurality of image data sets are obtained each corresponding to NMR k-space data acquired using a pulse sequence with an individual associated echo time tn. A system of linear equations is formed relating image signal values to a desired decomposed calculated data vector having a component such as a water and fat combination having zero mean noise, or having a real fat component and a real water component. A fat fraction is calculated from at least one component of the decomposed calculated data vector. In another embodiment, the system of linear equations is normalized and can directly estimate a fat fraction or a water fraction having reduced noise bias.
    Type: Application
    Filed: October 24, 2007
    Publication date: April 30, 2009
    Inventors: Huanzhou Yu, Scott Brian Reeder
  • Publication number: 20080048659
    Abstract: A method for producing images of a subject containing M spin species using a magnetic resonance imaging (MRI) system includes obtaining N k-space data matrices from N k-space data sets acquired with the MRI system using a pulse sequence with an individual associated echo time. The k-space data matrices each include corresponding data at the same plurality of k-space locations and time stamps are tracked for each k-space location. For each k-space location, a set of linear equations in k-space is solved. The set of linear equations relates corresponding data from the N k-space data matrices, echo times and time stamps to desired calculated k-space data. Calculated data in k-space which is corrected for chemical shift is produced corresponding to each k-space location and aggregated to obtain a k-space calculated data set. The k-space calculated data set is transformed to image space to obtain a corresponding image.
    Type: Application
    Filed: February 23, 2007
    Publication date: February 28, 2008
    Inventor: Scott Brian Reeder
  • Patent number: 7202665
    Abstract: Metabolite images are produced with an MRI system using a priori information about the resonant peaks of the metabolites and their relative sizes to reduce the amount of NMR data needed for proper spectral resolution. With the a priori information the acquired NMR signal is modeled. Using this model and NMR data acquired at a plurality of echo times (TE), the metabolite at each image pixel is calculated.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: April 10, 2007
    Assignee: Wisconsin Alumni Research Foundation
    Inventor: Scott Brian Reeder
  • Publication number: 20050212505
    Abstract: A combined toroid/shunt device for detecting residual current in an electrical installation comprising a plurality of conductors such as a live conductor (2) and a neutral conductor (3) is described. The device comprises a toroid means (1, 4) for detecting an AC residual current within a first range and a plurality of resistive shunts (6a) to (6d) for connection in respective ones of the plurality of conductors. A current detection means (5, 7, 13) responsive to current flowing in each of said shunts for detecting a DC residual current and/or an AC residual current within a second range is described. The first range of AC residual current is an AC residual current resulting from earth leakage or cross-leakage between conductors up to a saturation level at which the toroid or electronic means associated means therewith becomes saturated. The second range includes an AC residual current of said saturation level.
    Type: Application
    Filed: June 7, 2002
    Publication date: September 29, 2005
    Inventors: Martin Murray, Mark Crosier, Brian Reeder