Patents by Inventor Brian Richards Land

Brian Richards Land has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9710095
    Abstract: A multi-touch sensor panel is disclosed that can include a glass subassembly having a plurality of column traces of substantially transparent conductive material that can be formed on the back side, wherein the glass subassembly can also act as a cover that can be touched on the front side. Row traces of the same or different substantially transparent conductive material can then be located near the column traces, and a layer of dielectric material can be coupled between the column traces and the row traces. The row and column traces can be oriented to cross over each other at crossover locations separated by the dielectric material, and the crossover locations can form mutual capacitance sensors for detecting one or more touches on the front side of the glass subassembly.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: July 18, 2017
    Assignee: Apple Inc.
    Inventors: Steve Porter Hotelling, Brian Richards Land, Mark Arthur Hamblin, Tang Yew Tan
  • Patent number: 9575610
    Abstract: Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: February 21, 2017
    Assignee: Apple Inc.
    Inventors: Steve Porter Hotelling, Wei Chen, Christoph Horst Krah, John Greer Elias, Wei Hsin Yao, John Z. Zhong, Andrew Bert Hodge, Brian Richards Land, Willem Den Boer
  • Publication number: 20170003817
    Abstract: A multi-touch capacitive touch sensor panel can be created using a substrate with column and row traces formed on either side of the substrate. To shield the column (sense) traces from the effects of capacitive coupling from a modulated Vcom layer in an adjacent liquid crystal display (LCD) or any source of capacitive coupling, the row traces can be widened to shield the column traces, and the row traces can be placed closer to the LCD. In particular, the rows can be widened so that there is spacing of about 30 microns between adjacent row traces. In this manner, the row traces can serve the dual functions of driving the touch sensor panel, and also the function of shielding the more sensitive column (sense) traces from the effects of capacitive coupling.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Inventors: Steven P. HOTELLING, Brian Richards LAND
  • Publication number: 20170003816
    Abstract: A capacitive sensing apparatus is disclosed. In some examples, the capacitive sensing apparatus includes a sensor control system configured to: during a first scan of the sensor array: transmit a first alternating current (AC) signal concurrently with a second alternating current (AC) signal to the sensor array, transmit the first AC signal to the first electrode of the sensor array, measure a self capacitance at the first input location, and transmit the second AC signal to the second electrode of the sensor array without measuring a self capacitance at the second input location, and during a second scan of the sensor array: transmit the first AC signal concurrently with the second AC signal to the sensor array, transmit the first AC signal to the first electrode of the sensor array without measuring the self capacitance at the first input location, and measure the self capacitance at the second input location.
    Type: Application
    Filed: September 16, 2016
    Publication date: January 5, 2017
    Inventors: Jeffrey Traer BERNSTEIN, David T. AMM, Omar S. LEUNG, Christopher Tenzin MULLENS, Brian Michael KING, Brian Richards LAND, Reese T. CUTLER
  • Patent number: 9465502
    Abstract: A multi-touch capacitive touch sensor panel can be created using a substrate with column and row traces formed on either side of the substrate. To shield the column (sense) traces from the effects of capacitive coupling from a modulated Vcom layer in an adjacent liquid crystal display (LCD) or any source of capacitive coupling, the row traces can be widened to shield the column traces, and the row traces can be placed closer to the LCD. In particular, the rows can be widened so that there is spacing of about 30 microns between adjacent row traces. In this manner, the row traces can serve the dual functions of driving the touch sensor panel, and also the function of shielding the more sensitive column (sense) traces from the effects of capacitive coupling.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: October 11, 2016
    Assignee: Apple Inc.
    Inventors: Steven P. Hotelling, Brian Richards Land
  • Publication number: 20160224185
    Abstract: A touch surface device having improved sensitivity and dynamic range is disclosed. In one embodiment, the touch surface device includes a touch-sensitive panel having at least one sense node for providing an output signal indicative of a touch or no-touch condition on the panel; a compensation circuit, coupled to the at least one sense node, for generating a compensation signal that when summed with the output signal removes an undesired portion of the output signal so as to generated a compensated output signal; and an amplifier having an inverting input coupled to the output of the compensation circuit and a non-inverting input coupled to a known reference voltage.
    Type: Application
    Filed: April 7, 2016
    Publication date: August 4, 2016
    Inventors: Steve Porter HOTELLING, Brian Richards LAND
  • Publication number: 20160195964
    Abstract: Pre-stored no-touch or no-hover (no-event) sensor output values can initially be used when a sensor panel subsystem is first booted up to establish an initial baseline of sensor output values unaffected by fingers or other objects touching or hovering over the sensor panel during boot-up. This initial baseline can then be normalized so that each sensor generates the same output value for a given amount of touch or hover, providing a uniform response across the sensor panel and enabling subsequent touch or hover events to be more easily detected. After the initial normalization process is complete, the pre-stored baseline can be discarded in favor of a newly captured no-event baseline that may be more accurate than the pre-stored baseline due to temperature or other variations.
    Type: Application
    Filed: March 15, 2016
    Publication date: July 7, 2016
    Inventors: Brian Richards LAND, Wayne Carl WESTERMAN, Steve Porter HOTELLING
  • Patent number: 9329703
    Abstract: An intelligent stylus is disclosed. The stylus can provide a stylus condition in addition to a touch input. The stylus architecture can include multiple sensors to sense information indicative of the stylus condition, a microcontroller to determine the stylus condition based on the sensed information, and a transmitter to transmit the determined condition to a corresponding touch sensitive device so as to cause some action based on the condition.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: May 3, 2016
    Assignee: Apple Inc.
    Inventors: David R. Falkenburg, David I. Simon, Jonah A. Harley, Andrea Mucignat, Brian Richards Land, Christopher Tenzin Mullens, Steven Porter Hotelling
  • Publication number: 20160117023
    Abstract: Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
    Type: Application
    Filed: December 30, 2015
    Publication date: April 28, 2016
    Inventors: Steve Porte HOTELLING, Wei CHEN, Christoph Horst KRAH, John Greer ELIAS, Wei Hsin YAO, John Z. ZHONG, Andrew Bert HODGE, Brian Richards LAND, Willem DEN BOER
  • Patent number: 9323398
    Abstract: Improved capacitive touch and hover sensing with a sensor array is provided. An AC ground shield positioned behind the sensor array and stimulated with signals of the same waveform as the signals driving the sensor array may concentrate the electric field extending from the sensor array and enhance hover sensing capability. The hover position and/or height of an object that is nearby, but not directly above, a touch surface of the sensor array, e.g., in the border area at the end of a touch screen, may be determined using capacitive measurements of sensors near the end of the sensor array by fitting the measurements to a model. Other improvements relate to the joint operation of touch and hover sensing, such as determining when and how to perform touch sensing, hover sensing, both touch and hover sensing, or neither.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: April 26, 2016
    Assignee: Apple Inc.
    Inventors: Jeffrey Traer Bernstein, David T. Amm, Omar Leung, Christopher Tenzin Mullens, Brian Michael King, Brian Richards Land, Reese T. Cutler
  • Patent number: 9323405
    Abstract: A touch surface device having improved sensitivity and dynamic range is disclosed. In one embodiment, the touch surface device includes a touch-sensitive panel having at least one sense node for providing an output signal indicative of a touch or no-touch condition on the panel; a compensation circuit, coupled to the at least one sense node, for generating a compensation signal that when summed with the output signal removes an undesired portion of the output signal so as to generated a compensated output signal; and an amplifier having an inverting input coupled to the output of the compensation circuit and a non-inverting input coupled to a known reference voltage.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: April 26, 2016
    Assignee: Apple Inc.
    Inventors: Steve Porter Hotelling, Brian Richards Land
  • Patent number: 9310912
    Abstract: Pre-stored no-touch or no-hover (no-event) sensor output values can initially be used when a sensor panel subsystem is first booted up to establish an initial baseline of sensor output values unaffected by fingers or other objects touching or hovering over the sensor panel during boot-up. This initial baseline can then be normalized so that each sensor generates the same output value for a given amount of touch or hover, providing a uniform response across the sensor panel and enabling subsequent touch or hover events to be more easily detected. After the initial normalization process is complete, the pre-stored baseline can be discarded in favor of a newly captured no-event baseline that may be more accurate than the pre-stored baseline due to temperature or other variations.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: April 12, 2016
    Assignee: Apple Inc.
    Inventors: Brian Richards Land, Wayne Carl Westerman, Steve Porter Hotelling
  • Patent number: 9244561
    Abstract: Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: January 26, 2016
    Assignee: Apple Inc.
    Inventors: Steve Porter Hotelling, Wei Chen, Christoph Horst Krah, John Greer Elias, Wei Hsin Yao, John Z. Zhong, Andrew Bert Hodge, Brian Richards Land, Willem den Boer
  • Patent number: 9223436
    Abstract: Normalization of regions of a sensor panel capable of detecting multi-touch events, or a sensor panel capable of detecting multi-hover events, is disclosed to enable each sensor in the sensor panel to trigger a virtual button in a similar manner, given the same amount of touch or hover. Each sensor produces an output value proportional to the level or amount of touch or hover. However, due to processing, manufacturing and physical design differences, the sensor output values can vary from region to region or panel to panel for a given amount of touch or hover. To normalize the sensor output values across regions, gain and offset information can be obtained in advance, stored in nonvolatile memory, and later used to normalize the sensor output values so that all regions in the sensor panel can trigger virtual buttons similarly, providing a uniform “response function” at any location on the sensor panel.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: December 29, 2015
    Assignee: Apple Inc.
    Inventors: Brian Richards Land, Steve Porter Hotelling, Richard Wei Kwang Lim
  • Publication number: 20150268772
    Abstract: A multi-touch capacitive touch sensor panel can be created using a substrate with column and row traces formed on either side of the substrate. To shield the column (sense) traces from the effects of capacitive coupling from a modulated Vcom layer in an adjacent liquid crystal display (LCD) or any source of capacitive coupling, the row traces can be widened to shield the column traces, and the row traces can be placed closer to the LCD. In particular, the rows can be widened so that there is spacing of about 30 microns between adjacent row traces. In this manner, the row traces can serve the dual functions of driving the touch sensor panel, and also the function of shielding the more sensitive column (sense) traces from the effects of capacitive coupling.
    Type: Application
    Filed: June 9, 2015
    Publication date: September 24, 2015
    Inventors: Steven P. HOTELLING, Brian Richards LAND
  • Patent number: 9075491
    Abstract: A multi-touch capacitive touch sensor panel can be created using a substrate with column and row traces formed on either side of the substrate. To shield the column (sense) traces from the effects of capacitive coupling from a modulated Vcom layer in an adjacent liquid crystal display (LCD) or any source of capacitive coupling, the row traces can be widened to shield the column traces, and the row traces can be placed closer to the LCD. In particular, the rows can be widened so that there is spacing of about 30 microns between adjacent row traces. In this manner, the row traces can serve the dual functions of driving the touch sensor panel, and also the function of shielding the more sensitive column (sense) traces from the effects of capacitive coupling.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: July 7, 2015
    Assignee: Apple Inc.
    Inventors: Steven P. Hotelling, Brian Richards Land
  • Publication number: 20140333857
    Abstract: A multi-touch capacitive touch sensor panel can be created using a substrate with column and row traces formed on either side of the substrate. To shield the column (sense) traces from the effects of capacitive coupling from a modulated Vcom layer in an adjacent liquid crystal display (LCD) or any source of capacitive coupling, the row traces can be widened to shield the column traces, and the row traces can be placed closer to the LCD. In particular, the rows can be widened so that there is spacing of about 30 microns between adjacent row traces. In this manner, the row traces can serve the dual functions of driving the touch sensor panel, and also the function of shielding the more sensitive column (sense) traces from the effects of capacitive coupling.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventors: Steven P. HOTELLING, Brian Richards LAND
  • Patent number: 8884890
    Abstract: A multi-touch capacitive touch sensor panel can be created using a substrate with column and row traces formed on either side of the substrate. To shield the column (sense) traces from the effects of capacitive coupling from a modulated Vcom layer in an adjacent liquid crystal display (LCD) or any source of capacitive coupling, the row traces can be widened to shield the column traces, and the row traces can be placed closer to the LCD. In particular, the rows can be widened so that there is spacing of about 30 microns between adjacent row traces. In this manner, the row traces can serve the dual functions of driving the touch sensor panel, and also the function of shielding the more sensitive column (sense) traces from the effects of capacitive coupling.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: November 11, 2014
    Assignee: Apple Inc.
    Inventors: Steve Porter Hotelling, Brian Richards Land
  • Publication number: 20140240271
    Abstract: Pre-stored no-touch or no-hover (no-event) sensor output values can initially be used when a sensor panel subsystem is first booted up to establish an initial baseline of sensor output values unaffected by fingers or other objects touching or hovering over the sensor panel during boot-up. This initial baseline can then be normalized so that each sensor generates the same output value for a given amount of touch or hover, providing a uniform response across the sensor panel and enabling subsequent touch or hover events to be more easily detected. After the initial normalization process is complete, the pre-stored baseline can be discarded in favor of a newly captured no-event baseline that may be more accurate than the pre-stored baseline due to temperature or other variations.
    Type: Application
    Filed: May 8, 2014
    Publication date: August 28, 2014
    Applicant: Apple Inc.
    Inventors: Brian Richards LAND, Wayne Carl WESTERMAN, Steve Porter HOTELLING
  • Publication number: 20140152619
    Abstract: Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
    Type: Application
    Filed: February 6, 2014
    Publication date: June 5, 2014
    Applicant: Apple Inc.
    Inventors: Steve Porter HOTELLING, Wei Chen, Christoph Horst Krah, John Greer Elias, Wei Hsin Yao, John Z. Zhong, Andrew Bert Hodge, Brian Richards Land, Willem den Boer