Patents by Inventor Brian Richman

Brian Richman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210263488
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may determine, based on a three-dimensional (3D) model including a plurality of points corresponding to a scan target, a scan plan for scanning at least a portion of the scan target. For instance, the scan plan may include a plurality of poses for the UAV to assume to capture images of the scan target. The UAV may capture with one or more image sensors, one or more images of the scan target from one or more poses of the plurality of poses. Further, the UAV may determine an update to the 3D model based at least in part on the one or more images. Additionally, the UAV may update the scan plan based at least in part on the update to the 3D model.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 26, 2021
    Inventors: Peter HENRY, Jack ZHU, Brian RICHMAN, Harrison ZHENG, Hayk MARTIROSYAN, Matthew DONAHOE, Abraham BACHRACH, Adam BRY, Ryan David KENNEDY, Himel MONDAL, Quentin Allen Wah Yen DELEPINE
  • Publication number: 20210125406
    Abstract: Described herein are systems and methods for structure scan using an unmanned aerial vehicle. For example, some methods include accessing a three-dimensional map of a structure; generating facets based on the three-dimensional map, wherein the facets are respectively a polygon on a plane in three-dimensional space that is fit to a subset of the points in the three-dimensional map; generating a scan plan based on the facets, wherein the scan plan includes a sequence of poses for an unmanned aerial vehicle to assume to enable capture, using image sensors of the unmanned aerial vehicle, of images of the structure; causing the unmanned aerial vehicle to fly to assume a pose corresponding to one of the sequence of poses of the scan plan; and capturing one or more images of the structure from the pose.
    Type: Application
    Filed: June 8, 2020
    Publication date: April 29, 2021
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
  • Publication number: 20210125503
    Abstract: Described herein are systems for roof scan using an unmanned aerial vehicle. For example, some methods include capturing, using an unmanned aerial vehicle, an overview image of a roof of a building from above the roof; presenting a suggested bounding polygon overlaid on the overview image to a user; determining a bounding polygon based on the suggested bounding polygon and user edits; based on the bounding polygon, determining a flight path including a sequence of poses of the unmanned aerial vehicle with respective fields of view at a fixed height that collectively cover the bounding polygon; fly the unmanned aerial vehicle to a sequence of scan poses with horizontal positions matching respective poses of the flight path and vertical positions determined to maintain a consistent distance above the roof; and scanning the roof from the sequence of scan poses to generate a three-dimensional map of the roof.
    Type: Application
    Filed: August 6, 2020
    Publication date: April 29, 2021
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
  • Publication number: 20210065563
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes receiving, by the UAV, flight information describing a job to perform an inspection of a rooftop. A particular altitude is ascended to, and an inspection of the rooftop is performed including obtaining sensor information describing the rooftop. Location information identifying a damaged area of the rooftop is received. The damaged area of the rooftop is traveled to. An inspection of the damaged area of the rooftop is performed including obtaining detailed sensor information describing the damaged area. A safe landing location is traveled to.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 4, 2021
    Inventors: Mark Patrick Bauer, Brian Richman, Alan Jay Poole, Bernard J. Michini, Jonathan Anders Lovegren, Brett Michael Bethke, Hui Li
  • Publication number: 20210058331
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a distributed system architecture for unmanned air vehicles. One of the methods includes obtaining information identifying flight information of a UAV, with the flight information including flight phase information or a contingency condition associated with a flight critical module included in the UAV. The obtained information is analyzed, and one or more first payload modules are determined to enter a modified power state. Requests to enter the modified power state are caused to be transmitted to each determined payload module in the one or more first payload modules.
    Type: Application
    Filed: August 31, 2020
    Publication date: February 25, 2021
    Inventors: Jonathan Downey, Bernard J. Michini, Brian Richman
  • Patent number: 10764196
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a distributed system architecture for unmanned air vehicles. One of the methods includes obtaining information identifying flight information of a UAV, with the flight information including flight phase information or a contingency condition associated with a flight critical module included in the UAV. The obtained information is analyzed, and one or more first payload modules are determined to enter a modified power state. Requests to enter the modified power state are caused to be transmitted to each determined payload module in the one or more first payload modules.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: September 1, 2020
    Assignee: Skydio, Inc.
    Inventors: Jonathan Downey, Bernard J. Michini, Brian Richman
  • Patent number: 10083616
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes receiving, by the UAV, flight information describing a job to perform an inspection of a rooftop. A particular altitude is ascended to, and an inspection of the rooftop is performed including obtaining sensor information describing the rooftop. Location information identifying a damaged area of the rooftop is received. The damaged area of the rooftop is traveled to. An inspection of the damaged area of the rooftop is performed including obtaining detailed sensor information describing the damaged area. A safe landing location is traveled to.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: September 25, 2018
    Assignee: UNMANNED INNOVATION, INC.
    Inventors: Mark Patrick Bauer, Brian Richman, Alan Jay Poole, Bernard J. Michini, Jonathan Anders Lovegren, Brett Michael Bethke, Hui Li
  • Patent number: 10061470
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes receiving, by the UAV, flight information describing a job to perform an inspection of a rooftop. A particular altitude is ascended to, and an inspection of the rooftop is performed including obtaining sensor information describing the rooftop. Location information identifying a damaged area of the rooftop is received. The damaged area of the rooftop is traveled to. An inspection of the damaged area of the rooftop is performed including obtaining detailed sensor information describing the damaged area. A safe landing location is traveled to.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: August 28, 2018
    Assignee: Unmanned Innovation, Inc.
    Inventors: Brian Richman, Mark Patrick Bauer, Bernard J. Michini, Alan Jay Poole
  • Publication number: 20170199647
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes receiving, by the UAV, flight information describing a job to perform an inspection of a rooftop. A particular altitude is ascended to, and an inspection of the rooftop is performed including obtaining sensor information describing the rooftop. Location information identifying a damaged area of the rooftop is received. The damaged area of the rooftop is traveled to. An inspection of the damaged area of the rooftop is performed including obtaining detailed sensor information describing the damaged area. A safe landing location is traveled to.
    Type: Application
    Filed: March 27, 2017
    Publication date: July 13, 2017
    Inventors: Brian Richman, Mark Patrick Bauer, Bernard J. Michini, Alan Jay Poole
  • Publication number: 20170193829
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes receiving, by the UAV, flight information describing a job to perform an inspection of a rooftop. A particular altitude is ascended to, and an inspection of the rooftop is performed including obtaining sensor information describing the rooftop. Location information identifying a damaged area of the rooftop is received. The damaged area of the rooftop is traveled to. An inspection of the damaged area of the rooftop is performed including obtaining detailed sensor information describing the damaged area. A safe landing location is traveled to.
    Type: Application
    Filed: March 11, 2016
    Publication date: July 6, 2017
    Inventors: Mark Patrick Bauer, Brian Richman, Alan Jay Poole, Bernard J. Michini, Jonathan Anders Lovegren, Brett Michael Bethke, Hui Li
  • Patent number: 9609288
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes receiving, by the UAV, flight information describing a job to perform an inspection of a rooftop. A particular altitude is ascended to, and an inspection of the rooftop is performed including obtaining sensor information describing the rooftop. Location information identifying a damaged area of the rooftop is received. The damaged area of the rooftop is traveled to. An inspection of the damaged area of the rooftop is performed including obtaining detailed sensor information describing the damaged area. A safe landing location is traveled to.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: March 28, 2017
    Assignee: UNMANNED INNOVATION, INC.
    Inventors: Brian Richman, Mark Patrick Bauer, Bernard J. Michini, Alan Jay Poole
  • Publication number: 20160285774
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a distributed system architecture for unmanned air vehicles. One of the methods includes obtaining information identifying flight information of a UAV, with the flight information including flight phase information or a contingency condition associated with a flight critical module included in the UAV. The obtained information is analyzed, and one or more first payload modules are determined to enter a modified power state. Requests to enter the modified power state are caused to be transmitted to each determined payload module in the one or more first payload modules.
    Type: Application
    Filed: June 6, 2016
    Publication date: September 29, 2016
    Inventors: Jonathan Downey, Bernard J. Michini, Brian Richman
  • Patent number: 9403593
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a distributed system architecture for unmanned air vehicles. One of the methods includes obtaining information identifying flight information of a UAV, with the flight information including flight phase information or a contingency condition associated with a flight critical module included in the UAV. The obtained information is analyzed, and one or more first payload modules are determined to enter a modified power state. Requests to enter the modified power state are caused to be transmitted to each determined payload module in the one or more first payload modules.
    Type: Grant
    Filed: February 9, 2016
    Date of Patent: August 2, 2016
    Assignee: UNMANNED INNOVATION, INC.
    Inventors: Jonathan Downey, Bernard J. Michini, Brian Richman
  • Publication number: 20160152337
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a distributed system architecture for unmanned air vehicles. One of the methods includes obtaining information identifying flight information of a UAV, with the flight information including flight phase information or a contingency condition associated with a flight critical module included in the UAV. The obtained information is analyzed, and one or more first payload modules are determined to enter a modified power state. Requests to enter the modified power state are caused to be transmitted to each determined payload module in the one or more first payload modules.
    Type: Application
    Filed: February 9, 2016
    Publication date: June 2, 2016
    Inventors: Jonathan Downey, Bernard J. Michini, Brian Richman
  • Patent number: 9340283
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a distributed system architecture for unmanned air vehicles. One of the methods includes receiving selections of configuration information to provide to an unmanned aerial vehicle (UAV), with the selections of configuration information being associated with respective components included in the UAV. The configuration information associated with a first component is determined to be valid from selections of configuration information associated with the first component. The configuration information associated with the first component is provided for storage in the UAV in response to receiving a user action.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: May 17, 2016
    Assignee: UNMANNED INNOVATION, INC.
    Inventors: Jonathan Downey, Bernard J. Michini, Brian Richman
  • Publication number: 20160114886
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a distributed system architecture for unmanned air vehicles. One of the methods includes receiving selections of configuration information to provide to an unmanned aerial vehicle (UAV), with the selections of configuration information being associated with respective components included in the UAV. The configuration information associated with a first component is determined to be valid from selections of configuration information associated with the first component. The configuration information associated with the first component is provided for storage in the UAV in response to receiving a user action.
    Type: Application
    Filed: May 11, 2015
    Publication date: April 28, 2016
    Inventors: Jonathan Downey, Bernard J. Michini, Brian Richman
  • Publication number: 20160114888
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a distributed system architecture for unmanned air vehicles. One of the methods includes receiving selections of configuration information to provide to an unmanned aerial vehicle (UAV), with the selections of configuration information being associated with respective components included in the UAV. The configuration information associated with a first component is determined to be valid from selections of configuration information associated with the first component. The configuration information associated with the first component is provided for storage in the UAV in response to receiving a user action.
    Type: Application
    Filed: January 6, 2016
    Publication date: April 28, 2016
    Inventors: Jonathan Downey, Bernard J. Michini, Brian Richman
  • Patent number: 9310221
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a distributed system architecture for unmanned air vehicles. One of the methods includes receiving selections of configuration information to provide to an unmanned aerial vehicle (UAV), with the selections of configuration information being associated with respective components included in the UAV. The configuration information associated with a first component is determined to be valid from selections of configuration information associated with the first component. The configuration information associated with the first component is provided for storage in the UAV in response to receiving a user action.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: April 12, 2016
    Assignee: UNMANNED INNOVATION, INC.
    Inventors: Jonathan Downey, Bernard J. Michini, Brian Richman
  • Patent number: 9273981
    Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for a distributed system architecture for unmanned air vehicles. One of the methods includes obtaining information identifying flight information of a UAV, with the flight information including flight phase information or a contingency condition associated with a flight critical module included in the UAV. The obtained information is analyzed, and one or more first payload modules are determined to enter a modified power state. Requests to enter the modified power state are caused to be transmitted to each determined payload module in the one or more first payload modules.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: March 1, 2016
    Assignee: UNMANNED INNOVATION, INC.
    Inventors: Jonathan Downey, Bernard J. Michini, Brian Richman