Patents by Inventor Brian Robert Koch

Brian Robert Koch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10775564
    Abstract: Optical alignment of an optical connector to input/output couplers of a photonic integrated circuit can be achieved by first actively aligning the optical connector successively to two loopback alignment features formed in the photonic chip of the PIC, optically unconnected to the PIC, and then moving the optical connector, based on precise knowledge of the positions of the loopback alignment features relative to the input/output couplers of the PIC, to a position aligned with the input/output couplers of the PIC and locking it in place.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: September 15, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Martin A. Spannagel, Brian Robert Koch, Jared Bauters
  • Patent number: 10739539
    Abstract: An example photonic integrated circuit includes a transmitter circuit with a optical communication path to an optical coupler configured to couple with an optical fiber. The optical communication path has a propagation direction away from the transmitter circuit and towards the optical coupler. A counter-propagating tap diverts light sent by a light source backward against the propagation direction of the optical communication path. A photodiode receives the diverted light and measures its power level. The photodiode generates a feedback signal for the optical coupler and provides the feedback signal to the optical coupler. The optical coupler receives the feedback signal and adjusts a coupling alignment of the optical communication path to the optical fiber based on the feedback signal, which indicates the measured power level of the diverted counter-propagating light.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: August 11, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Brandon W. Buckley, Brian Robert Koch, John Garcia, Jared Bauters, Sudharsanan Srinivasan, Anand Ramaswamy
  • Publication number: 20200252126
    Abstract: Photonically integrated normal incidence photodetectors (NIPDs) and associated in-plane waveguide structures optically coupled to the NIPDs can be configured to allow for both in-plane and normal-incidence detection. In photonic circuits with light-generation capabilities, such as integrated optical transceivers, the ability of the NIPDs to detect in-plane light is used, in accordance with some embodiments, to provide self-test functionality.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Inventors: John Parker, Brian Robert Koch, Gregory Alan Fish, Hyundai Park
  • Patent number: 10666353
    Abstract: Photonically integrated normal incidence photodetectors (NIPDs) and associated in-plane waveguide structures optically coupled to the NIPDs can be configured to allow for both in-plane and normal-incidence detection. In photonic circuits with light-generation capabilities, such as integrated optical transceivers, the ability of the NIPDs to detect in-plane light is used, in accordance with some embodiments, to provide self-test functionality.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: May 26, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: John Parker, Brian Robert Koch, Gregory Alan Fish, Hyundai Park
  • Publication number: 20200162156
    Abstract: Photonically integrated normal incidence photodetectors (NIPDs) and associated in-plane waveguide structures optically coupled to the NIPDs can be configured to allow for both in-plane and normal-incidence detection. In photonic circuits with light-generation capabilities, such as integrated optical transceivers, the ability of the NIPDs to detect in-plane light is used, in accordance with some embodiments, to provide self-test functionality.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 21, 2020
    Inventors: John Parker, Brian Robert Koch, Gregory Alan Fish, Hyundai Park
  • Publication number: 20200033538
    Abstract: Optical alignment of an optical connector to input/output couplers of a photonic integrated circuit can be achieved by first actively aligning the optical connector successively to two loopback alignment features formed in the photonic chip of the PIC, optically unconnected to the PIC, and then moving the optical connector, based on precise knowledge of the positions of the loopback alignment features relative to the input/output couplers of the PIC, to a position aligned with the input/output couplers of the PIC and locking it in place.
    Type: Application
    Filed: October 1, 2019
    Publication date: January 30, 2020
    Inventors: Martin A. Spannagel, Brian Robert Koch, Jared Bauters
  • Patent number: 10527796
    Abstract: Optical alignment of an optical connector to input/output couplers of a photonic integrated circuit can be achieved by first actively aligning the optical connector successively to two loopback alignment features formed in the photonic chip of the PIC, optically unconnected to the PIC, and then moving the optical connector, based on precise knowledge of the positions of the loopback alignment features relative to the input/output couplers of the PIC, to a position aligned with the input/output couplers of the PIC and locking it in place.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: January 7, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Martin A. Spannagel, Brian Robert Koch, Jared Bauters
  • Publication number: 20200008321
    Abstract: Photonic and electronic integrated circuits can be cooled using variable conductance heat pipes containing a non-condensable gas in addition to a phase-changing working fluid. To package the heat pipe with a subassembly including the integrated circuits in a standard housing providing a heat sink contact area, the heat pipe is oriented, in some embodiments, with its axis between evaporator and condenser ends substantially perpendicular to the direction along which the integrated circuit subassembly is separated from the heat sink contact area, and a portion of the exterior surface of the heat pipe is thermally insulated, with a suitable thermal insulation structure, from the heat sink contact area.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 2, 2020
    Inventors: Roberto Marcoccia, Brian Robert Koch, Theodore J. Schmidt, Christopher Paul Wyland, Robert S. Guzzon, Gregory Alan Fish
  • Publication number: 20190378941
    Abstract: Embodiments of the invention describe apparatuses, optical systems, and methods related to utilizing optical cladding layers. According to one embodiment, a hybrid optical device includes a silicon semiconductor layer and a semiconductor layer having an overlapping region, wherein a majority of a field of an optical mode in the overlapping region is to be contained in the III-V semiconductor layer. A cladding region between the silicon semiconductor layer and the III-V semiconductor layer has a spatial property to substantially confine the optical mode to the III-V semiconductor layer and enable heat dissipation through the silicon semiconductor layer.
    Type: Application
    Filed: August 22, 2019
    Publication date: December 12, 2019
    Inventors: Erik Johan Norberg, Anand Ramaswamy, Brian Robert Koch
  • Patent number: 10498460
    Abstract: Described are various configurations for an amplifying optical demultiplexer. Various embodiments can receive an input signal comprising multiple sub-signals, and separate and amplify the signals within the demultiplexer. Some embodiments include a multistage demultiplexer with amplifiers located between a first and second stage. Some embodiments include a multistage demultiplexer with amplifiers located between a second and third stage.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: December 3, 2019
    Assignee: Juniper Networks, Inc.
    Inventors: Naser Dalvand, Erik Johan Norberg, Brian Robert Koch
  • Publication number: 20190331859
    Abstract: Optical alignment of an optical connector to input/output couplers of a photonic integrated circuit can be achieved by first actively aligning the optical connector successively to two loopback alignment features formed in the photonic chip of the PIC, optically unconnected to the PIC, and then moving the optical connector, based on precise knowledge of the positions of the loopback alignment features relative to the input/output couplers of the PIC, to a position aligned with the input/output couplers of the PIC and locking it in place.
    Type: Application
    Filed: April 30, 2018
    Publication date: October 31, 2019
    Inventors: Martin A. Spannagel, Brian Robert Koch, Jared Bauters
  • Patent number: 10431703
    Abstract: Embodiments of the invention describe apparatuses, optical systems, and methods related to utilizing optical cladding layers. According to one embodiment, a hybrid optical device includes a silicon semiconductor layer and a III-V semiconductor layer having an overlapping region, wherein a majority of a field of an optical mode in the overlapping region is to be contained in the III-V semiconductor layer. A cladding region between the silicon semiconductor layer and the III-V semiconductor layer has a spatial property to substantially confine the optical mode to the III-V semiconductor layer and enable heat dissipation through the silicon semiconductor layer.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: October 1, 2019
    Assignee: Juniper Networks, Inc.
    Inventors: Erik Johan Norberg, Anand Ramaswamy, Brian Robert Koch
  • Publication number: 20190273563
    Abstract: Described are various configurations for an amplifying optical demultiplexer. Various embodiments can receive an input signal comprising multiple sub-signals, and separate and amplify the signals within the demultiplexer. Some embodiments include a multistage demultiplexer with amplifiers located between a first and second stage. Some embodiments include a multistage demultiplexer with amplifiers located between a second and third stage.
    Type: Application
    Filed: March 2, 2018
    Publication date: September 5, 2019
    Inventors: Naser Dalvand, Erik Johan Norberg, Brian Robert Koch
  • Publication number: 20190260492
    Abstract: Embodiments of the invention describe apparatuses, optical systems, and methods for utilizing a dynamically reconfigurable optical transmitter. A laser array outputs a plurality of laser signals (which may further be modulated based on electrical signals), each of the plurality of laser signals having a wavelength, wherein the wavelength of each of the plurality of laser signals is tunable based on other electrical signals. An optical router receives the plurality of (modulated) laser signals at input ports and outputs the plurality of received (modulated) laser signals to one or more output ports based on the tuned wavelength of each of the plurality of received laser signals. This reconfigurable transmitter enables dynamic bandwidth allocation for multiple destinations via the tuning of the laser wavelengths.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 22, 2019
    Inventors: Brian Robert Koch, Daniel Sparacin, Alexander W. Fang
  • Publication number: 20190212505
    Abstract: An example photonic integrated circuit includes a transmitter circuit with a optical communication path to an optical coupler configured to couple with an optical fiber. The optical communication path has a propagation direction away from the transmitter circuit and towards the optical coupler. A counter-propagating tap diverts light sent by a light source backward against the propagation direction of the optical communication path. A photodiode receives the diverted light and measures its power level. The photodiode generates a feedback signal for the optical coupler and provides the feedback signal to the optical coupler. The optical coupler receives the feedback signal and adjusts a coupling alignment of the optical communication path to the optical fiber based on the feedback signal, which indicates the measured power level of the diverted counter-propagating light.
    Type: Application
    Filed: March 15, 2019
    Publication date: July 11, 2019
    Inventors: Brandon W. Buckley, Brian Robert Koch, John Garcia, Jared Bauters, Sudharsanan Srinivasan, Anand Ramaswamy
  • Patent number: 10281663
    Abstract: An example photonic integrated circuit includes a transmitter circuit with a optical communication path to an optical coupler configured to couple with an optical fiber. The optical communication path has a propagation direction away from the transmitter circuit and towards the optical coupler. A counter-propagating tap diverts light sent by a light source backward against the propagation direction of the optical communication path. A photodiode receives the diverted light and measures its power level. The photodiode generates a feedback signal for the optical coupler and provides the feedback signal to the optical coupler. The optical coupler receives the feedback signal and adjusts a coupling alignment of the optical communication path to the optical fiber based on the feedback signal, which indicates the measured power level of the diverted counter-propagating light.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: May 7, 2019
    Assignee: Juniper Networks, Inc.
    Inventors: Brandon W. Buckley, Brian Robert Koch, John Garcia, Jared Bauters, Sudharsanan Srinivasan, Anand Ramaswamy
  • Publication number: 20180219112
    Abstract: Embodiments of the invention describe apparatuses, optical systems, and methods related to utilizing optical cladding layers. According to one embodiment, a hybrid optical device includes a silicon semiconductor layer and a III-V semiconductor layer having an overlapping region, wherein a majority of a field of an optical mode in the overlapping region is to be contained in the III-V semiconductor layer. A cladding region between the silicon semiconductor layer and the III-V semiconductor layer has a spatial property to substantially confine the optical mode to the III-V semiconductor layer and enable heat dissipation through the silicon semiconductor layer.
    Type: Application
    Filed: March 21, 2018
    Publication date: August 2, 2018
    Inventors: Erik Johan Norberg, Anand Ramaswamy, Brian Robert Koch