Patents by Inventor Brian Root
Brian Root has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230072999Abstract: A collection device for a biological sample to capture target compounds such as viruses or other pathogens or particles for testing from within the sample and move the captured target compound to a separate chamber for subsequent processing. The collection device can include an openable substance blister including capture particles located in a cup interior. Capture particles can attract and bind the target compounds from the sample. An extraction tube extracts any nucleic acid from the target compound for storage or subsequent amplification and testing to confirm presence of known microorganisms. The extraction tube can comprise a heat-deformable material and can be connected to a microfluidic cartridge for further processing of nucleic acid including, amplification and detection. The microfluidic cartridge includes valves and a plurality of chambers for amplification.Type: ApplicationFiled: August 5, 2022Publication date: March 9, 2023Inventors: Orion Scott, Christopher Birch, Daniel Mills, Brian Root, James Landers, Jingyi Li, Matthew Yeung, David Saul, David Vigil, Andrew Guy, Stan Wada, Betina De Gorordo, Steward Dodman, Tom Moran, Stuart Knowles, Fernando Dias, Rick Gardner
-
Patent number: 11465145Abstract: A collection device for a biological sample to capture target compounds such as viruses or other pathogens or particles for testing from within the sample and move the captured target compound to a separate chamber for subsequent processing. The collection device can include an openable substance blister including capture particles located in a cup interior. Capture particles can attract and bind the target compounds from the sample. An extraction tube extracts any nucleic acid from the target compound for storage or subsequent amplification and testing to confirm presence of known microorganisms. The extraction tube can comprise a heat-deformable material and can be connected to a microfluidic cartridge for further processing of nucleic acid including, amplification and detection. The microfluidic cartridge includes valves and a plurality of chambers for amplification.Type: GrantFiled: August 26, 2021Date of Patent: October 11, 2022Inventors: Orion Scott, Christopher Birch, Daniel Mills, Brian Root, James Landers, Jingyi Li, Matthew Yeung, David Saul, David Vigil, Andrew Guy, Stan Wada, Betina De Gorordo, Steward Dodman, Tom Moran, Stuart Knowles, Fernando Dias, Rick Gardner
-
Publication number: 20220097042Abstract: A method to extract, amplify and separate nucleic acid in a microfluidic device having a plurality of chambers and channels can include a) introducing cells having nucleic acid to a first chamber of the microfluidic device and subjecting the cells in the first chamber to conditions that lyse the cells. The method can further include b) subjecting the first chamber to centrifugal force, thereby allowing the lysate or a portion thereof having nucleic acid to be distributed to a second chamber through a first channel in the microfluidic device. The method can also include c) combining the lysate or the portion thereof and reagents for amplification of the nucleic acid, thereby providing a second mixture. The method can also include d) subjecting the second chamber to centrifugal force, thereby allowing gas to be expelled from the second mixture.Type: ApplicationFiled: September 7, 2021Publication date: March 31, 2022Inventors: James P. Landers, Jacquelyn A. DuVall, Delphine Le Roux, Brian Root, Daniel Mills, Daniel A. Nelson, An-chi Tsuei, Brandon L. Thompson, Jingyi Li, Christopher Birch
-
Publication number: 20220088601Abstract: A collection device for a biological sample to capture target compounds such as viruses or other pathogens or particles for testing from within the sample and move the captured target compound to a separate chamber for subsequent processing. The collection device can include an openable substance blister including capture particles located in a cup interior. Capture particles can attract and bind the target compounds from the sample. An extraction tube extracts any nucleic acid from the target compound for storage or subsequent amplification and testing to confirm presence of known microorganisms. The extraction tube can comprise a heat-deformable material and can be connected to a microfluidic cartridge for further processing of nucleic acid including, amplification and detection. The microfluidic cartridge includes valves and a plurality of chambers for amplification.Type: ApplicationFiled: August 26, 2021Publication date: March 24, 2022Inventors: ORION SCOTT, CHRISTOPHER BIRCH, DANIEL MILLS, BRIAN ROOT, JAMES LANDERS, JINGYI LI, MATTHEW YEUNG, DAVID SAUL, DAVID VIGIL, ANDREW GUY ., STAN WADA, BETINA DE GORORDO, STEWARD DODMAN, TOM MORAN, STUART KNOWLES, FERNANDO DIAS, RICK GARDNER
-
Patent number: 11135583Abstract: A method to extract, amplify and separate nucleic acid in a microfluidic device having a plurality of chambers and channels can include a) introducing cells having nucleic acid to a first chamber of the microfluidic device and subjecting the cells in the first chamber to conditions that lyse the cells. The method can further include b) subjecting the first chamber to centrifugal force, thereby allowing the lysate or a portion thereof having nucleic acid to be distributed to a second chamber through a first channel in the microfluidic device. The method can also include c) combining the lysate or the portion thereof and reagents for amplification of the nucleic acid, thereby providing a second mixture. The method can also include d) subjecting the second chamber to centrifugal force, thereby allowing gas to be expelled from the second mixture.Type: GrantFiled: October 13, 2016Date of Patent: October 5, 2021Assignee: University of Virginia Patent FoundationInventors: James P. Landers, Jacquelyn A. DuVall, Delphine Le Roux, Brian Root, Daniel Mills, Daniel A. Nelson, An-Chi Tsuei, Brandon L. Thompson, Jingyi Li, Christopher Birch
-
Publication number: 20180304253Abstract: A method to extract, amplify and separate nucleic acid in a microfluidic device having a plurality of chambers and channels can include a) introducing cells having nucleic acid to a first chamber of the microfluidic device and subjecting the cells in the first chamber to conditions that lyse the cells. The method can further include b) subjecting the first chamber to centrifugal force, thereby allowing the lysate or a portion thereof having nucleic acid to be distributed to a second chamber through a first channel in the microfluidic device. The method can also include c) combining the lysate or the portion thereof and reagents for amplification of the nucleic acid, thereby providing a second mixture. The method can also include d) subjecting the second chamber to centrifugal force, thereby allowing gas to be expelled from the second mixture.Type: ApplicationFiled: October 13, 2016Publication date: October 25, 2018Inventors: James P. Landers, Jacquelyn A. DuVall, Delphine Le Roux, Brian Root, Daniel MIlls, Daniel A. Nelson, An-chi Tsuei, Brandon L. Thompson, Jingyi Li, Christopher Birch
-
Patent number: 9988676Abstract: A microfluidic cartridge can include at least one nucleic acid analysis portion. Each nucleic acid analysis portion can include a fluidic network being configured for micro-liter volumes or less, a sample input at the beginning of the fluidic network, a plurality of vent ports and fluidic channels in the fluidic network configured to effectuate hydrodynamic movement within the fluidic network, an extraction mixture reservoir in the fluidic network, a mixing chamber in the fluidic network, an amplification chamber in the fluidic network, and a separation channel in the fluidic network. A nucleic acid analyzer can be capable of performing nucleic acid analysis using the microfluidic cartridge. A nucleic acid analysis method can be performed using the microfluidic cartridge.Type: GrantFiled: June 19, 2015Date of Patent: June 5, 2018Assignee: LEIDOS INNOVATIONS TECHNOLOGY, INC.Inventors: Michael E. Egan, Brian Root, Orion N. Scott, Douglas J. South, Joan M. Bienvenue, Paul Kinnon, James Landers, David Saul, An-Chi Tsuei, Jason Hayes, Matthew Springer, Matthew Solomon, Peter Van Ruijven
-
Patent number: 9630182Abstract: A microfluidic chip includes one or more reaction chambers to hold fluids for chemical or biochemical reactions, such as PCR. A non-contact heat source heats the reaction chamber and the fluid, such that the heat source does not contact the reaction chamber or the fluid. The heat source can heat the reaction chamber and the fluid separately, where the reaction chamber and the fluid separately absorb heat radiation from the heat source. A temperature sensor acquires a temperature of the reaction chamber and/or the fluid. Control circuitry controls the heat source according to a cycling profile for the reaction in the fluid to cycle the heat source between heating and not heating the reaction chamber and the fluid based on the temperature acquired by the temperature sensor. Cooling can be provided passively or actively.Type: GrantFiled: December 4, 2013Date of Patent: April 25, 2017Inventors: Michael Edward Egan, Peter Karl Trost, James Landers, Brian Root, Orion Scott
-
Patent number: 9322054Abstract: A microfluidic cartridge can include at least one nucleic acid analysis portion. Each nucleic acid analysis portion can include a fluidic network being configured for micro-liter volumes or less, a sample input at the beginning of the fluidic network, a plurality of vent ports and fluidic channels in the fluidic network configured to effectuate hydrodynamic movement within the fluidic network, an extraction mixture reservoir in the fluidic network, a mixing chamber in the fluidic network, an amplification chamber in the fluidic network, and a separation channel in the fluidic network. A nucleic acid analyzer can be capable of performing nucleic acid analysis using the microfluidic cartridge. A nucleic acid analysis method can be performed using the microfluidic cartridge.Type: GrantFiled: February 21, 2013Date of Patent: April 26, 2016Assignees: Lockheed Martin Corporation, MICROLAB DIAGNOSTICS, INC.Inventors: Michael Egan, Brian Root, Orion N. Scott, Douglas J. South, Joan Bienvenue, Paul Kinnon, James Landers, David Saul, An-Chi Tsuei, Jason Hayes, Matthew Springer, Matthew Solomon, Peter van Ruijven
-
Publication number: 20150284775Abstract: A microfluidic cartridge can include at least one nucleic acid analysis portion. Each nucleic acid analysis portion can include a fluidic network being configured for micro-liter volumes or less, a sample input at the beginning of the fluidic network, a plurality of vent ports and fluidic channels in the fluidic network configured to effectuate hydrodynamic movement within the fluidic network, an extraction mixture reservoir in the fluidic network, a mixing chamber in the fluidic network, an amplification chamber in the fluidic network, and a separation channel in the fluidic network. A nucleic acid analyzer can be capable of performing nucleic acid analysis using the microfluidic cartridge. A nucleic acid analysis method can be performed using the microfluidic cartridge.Type: ApplicationFiled: June 19, 2015Publication date: October 8, 2015Applicants: LOCKHEED MARTIN CORPORATION, MICROLAB DIAGNOSTICS, INC.Inventors: Michael E. EGAN, Brian Root, Orion N. Scott, Douglas J. South, Joan M. Bienvenue, Paul Kinnon, James Landers, David Saul, An-Chi Tsuei, Jason Hayes, Matthew Springer, Matthew Solomon, Peter Van Ruijven
-
Publication number: 20150151302Abstract: A microfluidic chip includes one or more reaction chambers to hold fluids for chemical or biochemical reactions, such as PCR. A non-contact heat source heats the reaction chamber and the fluid, such that the heat source does not contact the reaction chamber or the fluid. The heat source can heat the reaction chamber and the fluid separately, where the reaction chamber and the fluid separately absorb heat radiation from the heat source. A temperature sensor acquires a temperature of the reaction chamber and/or the fluid. Control circuitry controls the heat source according to a cycling profile for the reaction in the fluid to cycle the heat source between heating and not heating the reaction chamber and the fluid based on the temperature acquired by the temperature sensor. Cooling can be provided passively or actively.Type: ApplicationFiled: December 4, 2013Publication date: June 4, 2015Applicants: ZyGEM CORPORATION LTD., LOCKHEED MARTIN CORPORATIONInventors: Michael Edward EGAN, Peter Karl Trost, James Landers, Brian Root, Orion Scott