Patents by Inventor Brian S. Donlon

Brian S. Donlon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7213601
    Abstract: A method of treatment of congestive heart failure comprises the steps of introducing an aortic occlusion catheter through a patient's peripheral artery, the aortic occlusion catheter having an occluding member movable from a collapsed position to an expanded position; positioning the occluding member in the patient's ascending aorta; moving the occluding member from the collapsed shape to the expanded shape after the positioning step; introducing cardioplegic fluid into the patient's coronary blood vessels to arrest the patient's heart; maintaining circulation of oxygenated blood through the patient's arterial system; and reshaping an outer wall of the patient's heart while the heart is arrested so as to reduce the transverse dimension of the left ventricle.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: May 8, 2007
    Assignee: Heartport, Inc
    Inventors: John H. Stevens, Lee R. Bolduc, Stephen W. Boyd, Brian S. Donlon, Hanson S. Gifford, III, Philip R. Houle, Daniel C. Rosenman
  • Patent number: 7017581
    Abstract: Surgical methods and instruments are disclosed for performing port-access or closed-chest coronary artery bypass (CABG) surgery in multivessel coronary artery disease. In contrast to standard open-chest CABG surgery, which requires a median sternotomy or other gross thoracotomy to expose the patient's heart, port-access CABG surgery is performed through small incisions or access ports made through the intercostal spaces between the patient's ribs, resulting in greatly reduced pain and morbidity to the patient. In situ arterial bypass grafts, such as the internal mammary arteries and/or the right gastroepiploic artery, are prepared for grafting by thoracoscopic or laparoscopic takedown techniques. Free grafts, such as a saphenous vein graft or a free arterial graft, can be used to augment the in situ arterial grafts. The graft vessels are anastomosed to the coronary arteries under direct visualization through a cardioscopic microscope inserted through an intercostal access port.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: March 28, 2006
    Inventors: Stephen W. Boyd, Alan R. Rapacki, Matthias Vaska, Brian S. Donlon, William S. Peters
  • Patent number: 6913600
    Abstract: Devices and methods are provided for temporarily inducing cardioplegic arrest in the heart of a patient and for establishing cardiopulmonary bypass in order to facilitate surgical procedures on the heart and its related blood vessels. Specifically, a catheter based system is provided for isolating the heart and coronary blood vessels of a patient from the remainder of the arterial system and for infusing a cardioplegic agent into the patient's coronary arteries to induce cardioplegic arrest in the heart. The system includes an endoaortic partitioning catheter having an expandable balloon at its distal end which is expanded within the ascending aorta to occlude the aortic lumen between the coronary ostia and the brachiocephalic artery. Means for centering the catheter tip within the ascending aorta include specially curved shaft configurations, eccentric or shaped occlusion balloons and a steerable catheter tip, which may be used separately or in combination.
    Type: Grant
    Filed: September 25, 1998
    Date of Patent: July 5, 2005
    Assignee: Heartport, Inc.
    Inventors: Kirsten L. Valley, David W. Snow, Timothy C. Corvi, Brian S. Donlon, Stephen W. Boyd, Sylvia W. Fan, Alex T. Roth, William S. Peters, Richard J. Mueller, Jr., Hanson S. Gifford, III
  • Patent number: 6802319
    Abstract: A method of treatment of congestive heart failure comprises the steps of introducing an aortic occlusion catheter through a patient's peripheral artery, the aortic occlusion catheter having an occluding member movable from a collapsed position to an expanded position; positioning the occluding member in the patient's ascending aorta; moving the occluding member from the collapsed shape to the expanded shape after the positioning step; introducing cardioplegic fluid into the patient's coronary blood vessels to arrest the patient's heart; maintaining circulation of oxygenated blood through the patient's arterial system; and reshaping an outer wall of the patient's heart while the heart is arrested so as to reduce the transverse dimension of the left ventricle.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: October 12, 2004
    Inventors: John H. Stevens, Lee R. Bolduc, Stephen W. Boyd, Brian S. Donlon, Hanson S. Gifford, III, Philip R. Houle, Daniel C. Rosenman
  • Publication number: 20040073301
    Abstract: Systems and methods are disclosed for performing less-invasive surgical procedures within the heart. A method for less-invasive repair or replacement of a cardiac valve comprises placing an instrument through an intercostal access port and through a penetration in a wall of a vessel in communication with the heart, advancing the instrument into the heart, and using the instrument to perform a surgical intervention on a cardiac valve in the heart under visualization through an intercostal access port The surgeons hands are kept outside of the chest during each step.
    Type: Application
    Filed: September 15, 2003
    Publication date: April 15, 2004
    Inventors: Brian S. Donlon, William S. Peters, Michi E. Garrison, Daniel C. Rosenman, John H. Stevens
  • Publication number: 20040055608
    Abstract: A method of treatment of congestive heart failure comprises the steps of introducing an aortic occlusion catheter through a patient's peripheral artery, the aortic occlusion catheter having an occluding member movable from a collapsed position to an expanded position; positioning the occluding member in the patient's ascending aorta; moving the occluding member from the collapsed shape to the expanded shape after the positioning step; introducing cardioplegic fluid into the patient's coronary blood vessels to arrest the patient's heart; maintaining circulation of oxygenated blood through the patient's arterial system; and reshaping an outer wall of the patient's heart while the heart is arrested so as to reduce the transverse dimension of the left ventricle.
    Type: Application
    Filed: September 17, 2003
    Publication date: March 25, 2004
    Applicant: Ethicon, Inc.
    Inventors: John H. Stevens, Lee R. Bolduc, Stephen W. Boyd, Brian S. Donlon, Hanson S. Gifford, Philip R. Houle, Daniel C. Rosenman
  • Patent number: 6651671
    Abstract: Systems and methods are disclosed for performing less-invasive surgical procedures within the heart. A method for less-invasive repair or replacement of a cardiac valve comprises placing an instrument through an intercostal access port and through a penetration in a wall of a vessel in communication with the heart, advancing the instrument into the heart, and using the instrument to perform a surgical intervention on a cardiac valve in the heart under visualization through an intercostal access port. The surgeons hands are kept outside of the chest during each step.
    Type: Grant
    Filed: October 12, 1999
    Date of Patent: November 25, 2003
    Assignee: Heartport, Inc.
    Inventors: Brian S. Donlon, William S. Peters, Michi E. Garrison, Daniel C. Rosenman, John H. Stevens
  • Patent number: 6645197
    Abstract: An apparatus for minimizing the risk of air embolism includes an instrument delivery member 2 having a gas outlet 38 for delivering gas into a patient's thoracic cavity. The gas is directed across an opening 48 in the instrument delivery member 2 to help retain the gas in the patient's thoracic cavity. The gas is preferably carbon dioxide which is more soluble in blood than air which will thereby decrease the likelihood of the patient receiving an embolism due to trapped air in the patient's heart and great vessels after surgery.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: November 11, 2003
    Assignee: Heartport, Inc.
    Inventors: Michi E. Garrison, Brian S. Donlon, Richard L. Mueller, Jr.
  • Patent number: 6613069
    Abstract: Surgical methods and instruments are disclosed for performing port-access or closed-chest coronary artery bypass (CABG) surgery in multivessel coronary artery disease. In contrast to standard open-chest CABG surgery, which requires a median sternotomy or other gross thoracotomy to expose the patient's heart, port-access CABG surgery is performed through small incisions or access ports made through the intercostal spaces between the patient's ribs, resulting in greatly reduced pain and morbidity to the patient. In situ arterial bypass grafts, such as the internal mammary arteries and/or the right gastroepiploic artery, are prepared for grafting by thoracoscopic or laparoscopic takedown techniques. Free grafts, such as a saphenous vein graft or a free arterial graft, can be used to augment the in situ arterial grafts. The graft vessels are anastomosed to the coronary arteries under direct visualization through a cardioscopic microscope inserted through an intercostal access port.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: September 2, 2003
    Assignee: Heartport, Inc.
    Inventors: Stephen W. Boyd, Alan R. Rapacki, Matthias Vaska, Brian S. Donlon, William S. Peters, John H. Stevens
  • Publication number: 20030102000
    Abstract: A method of treatment of congestive heart failure comprises the steps of introducing an aortic occlusion catheter through a patient's peripheral artery, the aortic occlusion catheter having an occluding member movable from a collapsed position to an expanded position; positioning the occluding member in the patient's ascending aorta; moving the occluding member from the collapsed shape to the expanded shape after the positioning step; introducing cardioplegic fluid into the patient's coronary blood vessels to arrest the patient's heart; maintaining circulation of oxygenated blood through the patient's arterial system; and reshaping an outer wall of the patient's heart while the heart is arrested so as to reduce the transverse dimension of the left ventricle.
    Type: Application
    Filed: March 24, 2000
    Publication date: June 5, 2003
    Inventors: John H. Stevens, Lee R. Bolduc, Stephen W. Boyd, Brian S. Donlon, Hanson S. Gifford, Philip R. Houle, Daniel C. Rosenman
  • Patent number: 6564805
    Abstract: Devices and methods are provided for less-invasive surgical treatment of cardiac valves whereby the need for a gross thoracotomy or median sternotomy is eliminated. In one aspect of the invention, a delivery system for a cardiac valve prosthesis such as an annuloplasty ring or prosthetic valve includes an elongated handle configured to extend into the heart through an intercostal space from outside of the chest cavity, and a prosthesis holder attached to the handle for releasably holding a prosthesis. The prosthesis holder is attached to the handle in such a way that the holder, prosthesis and handle have a profile with a height smaller than the width of an intercostal space when the adjacent ribs are unretracted, preferably less than about 30 mm.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: May 20, 2003
    Assignee: Heartport, Inc.
    Inventors: Michi E. Garrison, Brian S. Donlon, S. Christopher Daniel, John H. Stevens
  • Patent number: 6508759
    Abstract: A surgical microscope comprising a microscope body, lens means attached to the microscope body for magnifying an object image, an eyepiece attached to the microscope body for viewing the magnified object image, and coupling means attached to the microscope body for retaining a supplementary lens in optical alignment with the lens means, the coupling means being configured for introducing the supplementary lens through a percutaneous penetration into a body cavity, wherein the eyepiece and the lens means are configured to facilitate stereoscopic viewing. In a variation of the surgical microscope, a plurality of binocular eyepieces are attached to the microscope body to allow multiple persons to contemporaneously view the magnified object image.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: January 21, 2003
    Assignee: Heartport, Inc.
    Inventors: Charles S. Taylor, Brian S. Donlon, Timothy R. Machold
  • Patent number: 6494211
    Abstract: Surgical methods and instruments are disclosed for performing port-access or closed-chest coronary artery bypass (CABG) surgery in multivessel coronary artery disease. In contrast to standard open-chest CABG surgery, which requires a median stemotomy or other gross thoracotomy to expose the patient's heart, port-access CABG surgery is performed through small incisions or access ports made through the intercostal spaces between the patient's ribs, resulting in greatly reduced pain and morbidity to the patient. In situ arterial bypass grafts, such as the internal mammary arteries and/or the right gastroepiploic artery, are prepared for grafting by thoracoscopic or laparoscopic takedown techniques. Free grafts, such as a saphenous vein graft or a free arterial graft, can be used to augment the in situ arterial grafts. The graft vessels are anastomosed to the coronary arteries under direct visualization through a cardioscopic microscope inserted through an intercostal access port.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: December 17, 2002
    Assignee: Hearport, Inc.
    Inventors: Stephen W. Boyd, Alan R. Rapacki, Matthias Vaska, Brian S. Donlon, William S. Peters
  • Publication number: 20020183839
    Abstract: Devices and methods are provided for less-invasive surgical treatment of cardiac valves whereby the need for a gross thoracotomy or median sternotomy is eliminated. In one aspect of the invention, a delivery system for a cardiac valve prosthesis such as an annuloplasty ring or prosthetic valve includes an elongated handle configured to extend into the heart through an intercostal space from outside of the chest cavity, and a prosthesis holder attached to the handle for releasably holding a prosthesis. The prosthesis holder is attached to the handle in such a way that the holder, prosthesis and handle have a profile with a height smaller than the width of an intercostal space when the adjacent ribs are unretracted, preferably less than about 30 mm.
    Type: Application
    Filed: July 18, 2002
    Publication date: December 5, 2002
    Inventors: Michi E. Garrison, Brian S. Donlon, S. Christopher Daniel, John H. Stevens
  • Patent number: 6478029
    Abstract: Surgical methods and instruments are disclosed for performing port-access or closed-chest coronary artery bypass (CABG) surgery in multivessel coronary artery disease. In contrast to standard open-chest CABG surgery, which requires a median sternotomy or other gross thoracotomy to expose the patient's heart, post-access CABG surgery is performed through small incisions or access ports made through the intercostal spaces between the patient's ribs, resulting in greatly reduced pain and morbidity to the patient. In situ arterial bypass grafts, such as the internal mammary arteries and/or the right gastroepiploic artery, are prepared for grafting by thoracoscopic or laparoscopic takedown techniques. Free grafts, such as a saphenous vein graft or a free arterial graft, can be used to augment the in situ arterial grafts. The graft vessels are anastomosed to the coronary arteries under direct visualization through a cardioscopic microscope inserted through an intercostal access port.
    Type: Grant
    Filed: August 5, 2000
    Date of Patent: November 12, 2002
    Assignee: Hearport, Inc.
    Inventors: Stephen W. Boyd, Alan R. Rapacki, Matthias Vaska, Brian S. Donlon, William S. Peters
  • Patent number: 6423031
    Abstract: An aortic occlusion catheter has a blood return lumen for returning oxygenated blood to a patient and an occluding member for occluding the patient's ascending aorta. The blood return lumen has openings on both sides of the occluding member for infusing oxygenated blood on both sides of the occluding member.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: July 23, 2002
    Inventor: Brian S. Donlon
  • Publication number: 20020092533
    Abstract: Surgical methods and instruments are disclosed for performing port-access or closed-chest coronary artery bypass (CABG) surgery in multivessel coronary artery disease. In contrast to standard open-chest CABG surgery, which requires a median sternotomy or other gross thoracotomy to expose the patient's heart, port-access CABG surgery is performed through small incisions or access ports made through the intercostal spaces between the patient's ribs, resulting in greatly reduced pain and morbidity to the patient. In situ arterial bypass grafts, such as the internal mammary arteries and/or the right gastroepiploic artery, are prepared for grafting by thoracoscopic or laparoscopic takedown techniques. Free grafts, such as a saphenous vein graft or a free arterial graft, can be used to augment the in situ arterial grafts. The graft vessels are anastomosed to the coronary arteries under direct visualization through a cardioscopic microscope inserted through an intercostal access port.
    Type: Application
    Filed: October 19, 2001
    Publication date: July 18, 2002
    Inventors: Stephen W. Boyd, Alan R. Rapacki, Matthias Vaska, Brian S. Donlon, William S. Peters
  • Publication number: 20020087183
    Abstract: Surgical methods and instruments are disclosed for performing port-access or closed-chest coronary artery bypass (CABG) surgery in multivessel coronary artery disease. In contrast to standard open-chest CABG surgery, which requires a median sternotomy or other gross thoracotomy to expose the patient's heart, port-access CABG surgery is performed through small incisions or access ports made through the intercostal spaces between the patient's ribs, resulting in greatly reduced pain and morbidity to the patient. In situ arterial bypass grafts, such as the internal mammary arteries and/or the right gastroepiploic artery, are prepared for grafting by thoracoscopic or laparoscopic takedown techniques. Free grafts, such as a saphenous vein graft or a free arterial graft, can be used to augment the in situ arterial grafts. The graft vessels are anastomosed to the coronary arteries under direct visualization through a cardioscopic microscope inserted through an intercostal access port.
    Type: Application
    Filed: October 19, 2001
    Publication date: July 4, 2002
    Inventors: Stephen W. Boyd, Alan R. Rapacki, Matthias Vaska, Brian S. Donlon, William S. Peters, John H. Stevens
  • Publication number: 20020074004
    Abstract: Surgical methods and instruments are disclosed for performing port-access or closed-chest coronary artery bypass (CABG) surgery in multivessel coronary artery disease. In contrast to standard open-chest CABG surgery, which requires a median sternotomy or other gross thoracotomy to expose the patient's heart, port-access CABG surgery is performed through small incisions or access ports made through the intercostal spaces between the patient's ribs, resulting in greatly reduced pain and morbidity to the patient. In situ arterial bypass grafts, such as the internal mammary arteries and/or the right gastroepiploic artery, are prepared for grafting by thoracoscopic or laparoscopic takedown techniques. Free grafts, such as a saphenous vein graft or a free arterial graft, can be used to augment the in situ arterial grafts. The graft vessels are anastomosed to the coronary arteries under direct visualization through a cardioscopic microscope inserted through an intercostal access port.
    Type: Application
    Filed: October 19, 2001
    Publication date: June 20, 2002
    Inventors: Stephen W. Boyd, Alan R. Rapacki, Matthias Vaska, Brian S. Donlon, William S. Peters, John H. Stevens
  • Publication number: 20020069884
    Abstract: Surgical methods and instruments are disclosed for performing port-access or closed-chest coronary artery bypass (CABG) surgery in multivessel coronary artery disease. In contrast to standard open-chest CABG surgery, which requires a median sternotomy or other gross thoracotomy to expose the patient's heart, port-access CABG surgery is performed through small incisions or access ports made through the intercostal spaces between the patient's ribs, resulting in greatly reduced pain and morbidity to the patient. In situ arterial bypass grafts, such as the internal mammary arteries and/or the right gastroepiploic artery, are prepared for grafting by thoracoscopic or laparoscopic takedown techniques. Free grafts, such as a saphenous vein graft or a free arterial graft, can be used to augment the in situ arterial grafts. The graft vessels are anastomosed to the coronary arteries under direct visualization through a cardioscopic microscope inserted through an intercostal access port.
    Type: Application
    Filed: October 19, 2001
    Publication date: June 13, 2002
    Inventors: Stephen W. Boyd, Alan R. Rapacki, Matthias Vaska, Brian S. Donlon, William S. Peters