Patents by Inventor Brian S. Freer

Brian S. Freer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9103031
    Abstract: A method of forming a thin film on a substrate is described. The method comprises providing a substrate in a reduced-pressure environment, and generating a gas cluster ion beam (GCIB) in the reduced-pressure environment from a pressurized gas mixture. A beam acceleration potential and a beam dose are set to achieve a thickness of the thin film ranging up to about 300 angstroms and to achieve a surface roughness of an upper surface of the thin film that is less than about 20 angstroms. The GCIB is accelerated according to the beam acceleration potential, and the accelerated GCIB is irradiated onto at least a portion of the substrate according to the beam dose. By doing so, the thin film is grown on the at least a portion of the substrate to achieve the thickness and the surface roughness.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: August 11, 2015
    Assignee: TEL Epion Inc.
    Inventors: John J. Hautala, Michael Graf, Yan Shao, Brian S. Freer
  • Publication number: 20090317564
    Abstract: A method of forming a thin film on a substrate is described. The method comprises providing a substrate in a reduced-pressure environment, and generating a gas cluster ion beam (GCIB) in the reduced-pressure environment from a pressurized gas mixture. A beam acceleration potential and a beam dose are set to achieve a thickness of the thin film ranging up to about 300 angstroms and to achieve a surface roughness of an upper surface of the thin film that is less than about 20 angstroms. The GCIB is accelerated according to the beam acceleration potential, and the accelerated GCIB is irradiated onto at least a portion of the substrate according to the beam dose. By doing so, the thin film is grown on the at least a portion of the substrate to achieve the thickness and the surface roughness.
    Type: Application
    Filed: June 24, 2008
    Publication date: December 24, 2009
    Applicant: TEL EPION INC.
    Inventors: John J. Hautala, Michael Graf, Yan Shao, Brian S. Freer
  • Patent number: 7598495
    Abstract: A focusing particle trap system for ion implantation comprising an ion beam source that generates an ion beam, a beam line assembly that receives the ion beam from the ion beam source comprising a mass analyzer that selectively passes selected ions, a focusing electrostatic particle trap that receives the ion beam and removes particles from the ion beam comprising an entrance electrode comprising an entrance aperture and biased to a first base voltage, wherein the first surface of the entrance electrode is facing away from a center electrode and is approximately flat, wherein the second surface of the entrance electrode is facing toward the center electrode and is concave, wherein the center electrode is positioned a distance downstream from the entrance electrode comprising a center aperture and biased to a center voltage, wherein the center voltage is less than the first base voltage, wherein the first surface of the center electrode is facing toward the entrance electrode and is convex, wherein the second
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: October 6, 2009
    Assignee: Axcelis Technologies, Inc.
    Inventors: Peter L. Kellerman, Victor M. Benveniste, Alexander S. Perel, Brian S. Freer, Michael A. Graf
  • Patent number: 7557363
    Abstract: A method derives a terminal return current or upstream current to adjust and/or compensate for variations in beam current during ion implantation. One or more individual upstream current measurements are obtained from a region of an ion implantation system. A terminal return current, or composite upstream current, is derived from the one or more current measurements. The terminal return current is then employed to adjust scanning or dose of an ion beam in order to facilitate beam current uniformity at a target wafer.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: July 7, 2009
    Assignee: Axcelis Technologies, Inc.
    Inventors: Yongzhang Huang, Brian S. Freer, John Ye, Christopher Godfrey, Michael A. Graf, Patrick Splinter
  • Patent number: 7476876
    Abstract: An angle measurement system for measuring angles of incidence for ion beams during ion implantation includes a varied angle slot array and an array of charge measurement devices located downstream of the varied angle slot array. The varied angle slot array includes slots formed within a structure from an entrance surface to an exit surface. Each of the slots has a varied acceptance angle range. The array of charge measurement devices are individually associated with the slots and can measure charge or beam current for beamlets that pass through the slots. These measurements and the varied or different acceptance angle ranges can then be employed to determine a measured angle of incidence and/or angular content for an ion beam.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: January 13, 2009
    Assignee: Axcelis Technologies, Inc.
    Inventor: Brian S. Freer
  • Patent number: 7435977
    Abstract: Angle of incidence measurements along an axis of ion implantation are obtained by employing positive and negative slot structures. The positive slot structures have entrance openings, exit openings, and slot profiles there between that obtain portion(s) of an ion beam having a selected range of angles in a positive direction. The negative slot structures have entrance openings, exit openings, and slot profiles there between that obtain portion(s) of the ion beam having the selected range of angles in a negative direction. A first beam measurement mechanism measures beam current of the positive portion to obtain a positive angle beam current measurement. A second beam measurement mechanism measures beam current of the negative portion to obtain a negative angle beam current measurement. An analyzer component employs the positive angle beam current measurement and the negative angle beam current measurement to determine a measured angle of incidence.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: October 14, 2008
    Assignee: Axcelis Technologies, Inc.
    Inventors: Brian S. Freer, Alexander S. Perel
  • Publication number: 20070278427
    Abstract: A method derives a terminal return current or upstream current to adjust and/or compensate for variations in beam current during ion implantation. One or more individual upstream current measurements are obtained from a region of an ion implantation system. A terminal return current, or composite upstream current, is derived from the one or more current measurements. The terminal return current is then employed to adjust scanning or dose of an ion beam in order to facilitate beam current uniformity at a target wafer.
    Type: Application
    Filed: October 4, 2006
    Publication date: December 6, 2007
    Inventors: Yongzhang Huang, Brian S. Freer, John Ye, Christopher Godfrey, Michael A. Graf, Patrick Splinter
  • Patent number: 6828572
    Abstract: The present invention facilitates semiconductor device fabrication by monitoring and correcting angular errors during ion implantation procedures via an incident ion beam angle detector. Additionally, the present invention facilitates semiconductor device fabrication by calibrating a process disk with respect to an incident ion beam without measuring implantation results on wafers prior to an ion implantation process.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: December 7, 2004
    Assignee: Axcelis Technologies, Inc.
    Inventors: Ronald N. Reece, Michael A. Graf, Thomas Parrill, Brian S. Freer
  • Publication number: 20040195528
    Abstract: The present invention facilitates semiconductor device fabrication by monitoring and correcting angular errors during ion implantation procedures via an incident ion beam angle detector. Additionally, the present invention facilitates semiconductor device fabrication by calibrating a process disk with respect to an incident ion beam without measuring implantation results on wafers prior to an ion implantation process.
    Type: Application
    Filed: April 1, 2003
    Publication date: October 7, 2004
    Inventors: Ronald N. Reece, Michael A. Graf, Thomas Parrill, Brian S. Freer
  • Patent number: 6221169
    Abstract: A method and system is provided for cleaning a contaminated surface of a vacuum chamber, comprising means for (i) generating an ion beam (44) having a reactive species (e.g., fluorine) component; (ii) directing the ion beam toward a contaminated surface (100); (iii) neutralizing the ion beam (44) by introducing, into the chamber proximate the contaminated surface, a neutralizing gas (70) (e.g., xenon) such that the ion beam (44) collides with molecules of the neutralizing gas, and, as a result of charge exchange reactions between the ion beam and the neutralizing gas molecules, creates a beam of energetic reactive neutral atoms of the reactive species; (iv) cleaning the surface (100) by allowing the beam of energetic reactive neutral atoms of the reactive species to react with contaminants to create reaction products; and (v) removing from the chamber any volatile reaction products that result. Alternatively, the method and system include means for (i) generating an energetic non-reactive (e.g.
    Type: Grant
    Filed: May 10, 1999
    Date of Patent: April 24, 2001
    Assignee: Axcelis Technologies, Inc.
    Inventors: James D. Bernstein, Peter M. Kopalidis, Brian S. Freer
  • Patent number: 6215125
    Abstract: The present invention provides a method of extending, i.e. prolonging, the operating lifetime of hot cathode discharge ion source by utilizing and introducing a nitrogen-containing co-bleed gas into an ion implantation apparatus which contains at least a hot cathode discharge ion source and an ion implantation gas such as GeF4.
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: April 10, 2001
    Assignee: International Business Machines Corporation
    Inventors: Jiong Chen, Brian S. Freer, John F. Grant, Lawrence T. Jacobs, Joseph L. Malenfant, Jr.
  • Patent number: 5909031
    Abstract: A plasma-enhanced electron shower (62) for an ion implantation system (10) is provided, including a target (64) provided with a chamber (84) at least partially defined by a replaceable graphite liner (82). A filament assembly (67) attached to the target generates and directs a supply of primary electrons toward a surface (118) provided by the graphite liner, which is biased to a low negative voltage of up to -10V (approximately -6V) to insure that secondary electrons emitted therefrom as a result of impacting primary electrons have a uniform low energy. The filament assembly (67) includes a filament (68) for thermionically emitting primary electrons; a biased (-300V) filament electrode (70) for focusing the emitted primary electrons, and a grounded extraction aperture (72) for extracting the focused primary electrons toward the graphite surface (118). A gas nozzle (77) attached to the target (64) introduces into the chamber a supply of gas molecules to be ionized by the primary electrons.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: June 1, 1999
    Assignee: Eaton Corporation
    Inventors: Peter L. Kellerman, James D. Bernstein, Brian S. Freer
  • Patent number: 5903009
    Abstract: A plasma-enhanced electron shower (62) for an ion implantation system (10) is provided, including an extension tube (66) having a replaceable graphite inner liner (88). The inner liner is biased to a low negative potential (-6 V) to prevent low energy secondary electrons generated by the electron shower target from being shunted away from the wafer, keeping them available for wafer charge neutralization. The electrically biased inner surface is provided with serrations (126) comprising alternating wafer-facing surfaces (128) and target-facing surfaces (130). During operation of the electron shower (62), photoresist or other material which may sputter back from the wafer collects on the wafer-facing surfaces (128), rendering them non-conductive, while the target-facing surfaces (130) remain clean and therefore conductive. The conductive target-facing surfaces provide a shunt (low resistance) path to electrical ground for high energy electrons generated in the electron shower.
    Type: Grant
    Filed: September 8, 1997
    Date of Patent: May 11, 1999
    Assignee: Eaton Corporation
    Inventors: James D. Bernstein, Brian S. Freer, Peter L. Kellerman