Patents by Inventor Brian Scott Turk

Brian Scott Turk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220135894
    Abstract: A continuous desulfurization process and process system are described for removal of reduced sulfur species at gas stream concentrations in a range of from about 5 to about 5000 ppmv, using fixed beds containing regenerable sorbents, and for regeneration of such regenerable sorbents. The desulfurization removes the reduced sulfur species of hydrogen sulfide, carbonyl sulfide, carbon disulfide, and/or thiols and disulfides with four or less carbon atoms, to ppbv concentrations. In specific disclosed implementations, regenerable metal oxide-based sorbents are integrated along with a functional and effective process to control the regeneration reaction and process while maintaining a stable dynamic sulfur capacity. A membrane-based process and system is described for producing regeneration and purge gas for the desulfurization.
    Type: Application
    Filed: January 18, 2022
    Publication date: May 5, 2022
    Inventors: Raghubir Prasad GUPTA, Brian Scott Turk
  • Publication number: 20220017830
    Abstract: A continuous desulfurization process and process system are described for removal of reduced sulfur species at gas stream concentrations in a range of from about 5 to about 5000 ppmv, using fixed beds containing regenerable sorbents, and for regeneration of such regenerable sorbents. The desulfurization removes the reduced sulfur species of hydrogen sulfide, carbonyl sulfide, carbon disulfide, and/or thiols and disulfides with four or less carbon atoms, to ppbv concentrations. In specific disclosed implementations, regenerable metal oxide-based sorbents are integrated along with a functional and effective process to control the regeneration reaction and process while maintaining a stable dynamic sulfur capacity . A membrane-based process and system is described for producing regeneration and purge gas for the desulfurization.
    Type: Application
    Filed: January 28, 2020
    Publication date: January 20, 2022
    Inventors: Raghubir Prasad Gupta, Brian Scott Turk
  • Patent number: 11225618
    Abstract: A continuous desulfurization process and process system are described for removal of reduced sulfur species at gas stream concentrations in a range of from about 5 to about 5000 ppmv, using fixed beds containing regenerable sorbents, and for regeneration of such regenerable sorbents. The desulfurization removes the reduced sulfur species of hydrogen sulfide, carbonyl sulfide, carbon disulfide, and/or thiols and disulfides with four or less carbon atoms, to ppbv concentrations. In specific disclosed implementations, regenerable metal oxide-based sorbents are integrated along with a functional and effective process to control the regeneration reaction and process while maintaining a stable dynamic sulfur capacity. A membrane-based process and system is described for producing regeneration and purge gas for the desulfurization.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: January 18, 2022
    Assignee: SUSTEON INC.
    Inventors: Raghubir Prasad Gupta, Brian Scott Turk
  • Patent number: 10265677
    Abstract: A mixed salt composition adapted for use as a sorbent for carbon dioxide removal from a gaseous stream is provided, the composition being in solid form and including magnesium oxide, an alkali metal carbonate, and an alkali metal nitrate, wherein the composition has a molar excess of magnesium characterized by a Mg:X atomic ratio of at least about 3:1, wherein X is the alkali metal. A process for preparing the mixed salt is also provided, the process including mixing a magnesium salt with a solution comprising alkali metal ions, carbonate ions, and nitrate ions to form a slurry or colloid including a solid mixed salt including magnesium carbonate; separating the solid mixed salt from the slurry or colloid to form a wet cake; drying the wet cake to form a dry cake including the solid mixed salt; and calcining the dry cake to form a mixed salt sorbent.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: April 23, 2019
    Assignee: Research Triangle Institute
    Inventors: Jian-Ping Shen, Luke James Ivor Coleman, Marty Alan Lail, Raghubir Prasad Gupta, Brian Scott Turk
  • Publication number: 20180043328
    Abstract: A mixed salt composition adapted for use as a sorbent for carbon dioxide removal from a gaseous stream is provided, the composition being in solid form and including magnesium oxide, an alkali metal carbonate, and an alkali metal nitrate, wherein the composition has a molar excess of magnesium characterized by a Mg:X atomic ratio of at least about 3:1, wherein X is the alkali metal. A process for preparing the mixed salt is also provided, the process including mixing a magnesium salt with a solution comprising alkali metal ions, carbonate ions, and nitrate ions to form a slurry or colloid including a solid mixed salt including magnesium carbonate; separating the solid mixed salt from the slurry or colloid to form a wet cake; drying the wet cake to form a dry cake including the solid mixed salt; and calcining the dry cake to form a mixed salt sorbent.
    Type: Application
    Filed: October 19, 2017
    Publication date: February 15, 2018
    Inventors: Jian-Ping Shen, Luke James Ivor Coleman, Marty Alan Lail, Raghubir Prasad Gupta, Brian Scott Turk
  • Patent number: 9808783
    Abstract: A mixed salt composition adapted for use as a sorbent for carbon dioxide removal from a gaseous stream is provided, the composition being in solid form and including magnesium oxide, an alkali metal carbonate, and an alkali metal nitrate, wherein the composition has a molar excess of magnesium characterized by a Mg:X atomic ratio of at least about 3:1, wherein X is the alkali metal. A process for preparing the mixed salt is also provided, the process including mixing a magnesium salt with a solution comprising alkali metal ions, carbonate ions, and nitrate ions to form a slurry or colloid including a solid mixed salt including magnesium carbonate; separating the solid mixed salt from the slurry or colloid to form a wet cake; drying the wet cake to form a dry cake including the solid mixed salt; and calcining the dry cake to form a mixed salt sorbent.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: November 7, 2017
    Assignee: Research Triangle Institute
    Inventors: Jian-Ping Shen, Luke James Ivor Coleman, Marty Alan Lail, Raghubir Prasad Gupta, Brian Scott Turk
  • Publication number: 20150190777
    Abstract: A mixed salt composition adapted for use as a sorbent for carbon dioxide removal from a gaseous stream is provided, the composition being in solid form and including magnesium oxide, an alkali metal carbonate, and an alkali metal nitrate, wherein the composition has a molar excess of magnesium characterized by a Mg:X atomic ratio of at least about 3:1, wherein X is the alkali metal. A process for preparing the mixed salt is also provided, the process including mixing a magnesium salt with a solution comprising alkali metal ions, carbonate ions, and nitrate ions to form a slurry or colloid including a solid mixed salt including magnesium carbonate; separating the solid mixed salt from the slurry or colloid to form a wet cake; drying the wet cake to form a dry cake including the solid mixed salt; and calcining the dry cake to form a mixed salt sorbent.
    Type: Application
    Filed: July 19, 2013
    Publication date: July 9, 2015
    Inventors: Jian-Ping Shen, Luke James Ivor Coleman, Marty Alan Lail, Raghubir Prasad Gupta, Brian Scott Turk
  • Patent number: 7956006
    Abstract: The disclosure relates to zinc oxide-based sorbents, and processes for preparing and using them. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl2O4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: June 7, 2011
    Assignee: Research Triangle Institute
    Inventors: Santosh Kumar Gangwal, Brian Scott Turk, Raghubir Prasad Gupta
  • Patent number: 7682423
    Abstract: Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl2O4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 23, 2010
    Assignee: Research Triangle Institute
    Inventors: Santosh Kumar Gangwal, Brian Scott Turk, Raghubir Prasael Gupta
  • Patent number: 6951635
    Abstract: Zinc oxide-based sorbents, and processes for preparing and using them are provided, wherein the sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents contain an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl2O4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, containing a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: October 4, 2005
    Assignee: Research Triangle Institute
    Inventors: Santosh Kumar Gangwal, Brian Scott Turk, Raghubir Prasad Gupta