Patents by Inventor Brian Stark

Brian Stark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11589081
    Abstract: A digital content recording network controller device determines a first content of a set of content to be more likely to be requested by a user of a content access device than a second content of the set of content based on monitored behavior of the user. The device stores the first content in a first storage device of a tiered group of storage devices and stores the second content in a second storage device of the tiered group of storage devices wherein the content access device is located closer to the first storage device than the second storage device. This balances storage load with accessibility, resulting in a faster responding system that does not require as much storage.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: February 21, 2023
    Assignee: T-MOBILE USA, INC.
    Inventors: Charles A. Hasek, IV, Brian Stark
  • Patent number: 11546212
    Abstract: An electronic device (such as an origin server) in a content delivery system performs intelligent content server handling of client receipt disruptions. The electronic device may receive requests for segments of a content asset submitted using a manifest that has segment request addresses with session identifiers, estimate a session interruption using the requests and the session identifiers, and handle the session interruption. The electronic device may handle the session interruption by scheduling a recording of the content asset, reallocating network resources, and so on. In some examples, the electronic device may also provide the manifest.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: January 3, 2023
    Assignee: T-MOBILE USA, INC.
    Inventor: Brian Stark
  • Publication number: 20220141499
    Abstract: A digital content recording network controller device determines a first content of a set of content to be more likely to be requested by a user of a content access device than a second content of the set of content based on monitored behavior of the user. The device stores the first content in a first storage device of a tiered group of storage devices and stores the second content in a second storage device of the tiered group of storage devices wherein the content access device is located closer to the first storage device than the second storage device. This balances storage load with accessibility, resulting in a faster responding system that does not require as much storage.
    Type: Application
    Filed: January 14, 2022
    Publication date: May 5, 2022
    Inventors: Charles A. Hasek, IV, Brian Stark
  • Patent number: 11265585
    Abstract: A digital content recording network controller device determines a first content of a set of content to be more likely to be requested by a user of a content access device than a second content of the set of content based on monitored behavior of the user. The device stores the first content in a first storage device of a tiered group of storage devices and stores the second content in a second storage device of the tiered group of storage devices wherein the content access device is located closer to the first storage device than the second storage device. This balances storage load with accessibility, resulting in a faster responding system that does not require as much storage.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: March 1, 2022
    Assignee: T-MOBILE USA, INC.
    Inventors: Charles A. Hasek, IV, Brian Stark
  • Publication number: 20210281477
    Abstract: An electronic device (such as an origin server) in a content delivery system performs intelligent content server handling of client receipt disruptions. The electronic device may receive requests for segments of a content asset submitted using a manifest that has segment request addresses with session identifiers, estimate a session interruption using the requests and the session identifiers, and handle the session interruption. The electronic device may handle the session interruption by scheduling a recording of the content asset, reallocating network resources, and so on. In some examples, the electronic device may also provide the manifest.
    Type: Application
    Filed: May 21, 2021
    Publication date: September 9, 2021
    Inventor: Brian Stark
  • Patent number: 11050617
    Abstract: An electronic device (such as an origin server) in a content delivery system performs intelligent content server handling of client receipt disruptions. The electronic device may receive requests for segments of a content asset submitted using a manifest that has segment request addresses with session identifiers, estimate a session interruption using the requests and the session identifiers, and handle the session interruption. The electronic device may handle the session interruption by scheduling a recording of the content asset, reallocating network resources, and so on. In some examples, the electronic device may also provide the manifest.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: June 29, 2021
    Assignee: T-MOBILE USA, INC.
    Inventor: Brian Stark
  • Publication number: 20200322217
    Abstract: An electronic device (such as an origin server) in a content delivery system performs intelligent content server handling of client receipt disruptions. The electronic device may receive requests for segments of a content asset submitted using a manifest that has segment request addresses with session identifiers, estimate a session interruption using the requests and the session identifiers, and handle the session interruption. The electronic device may handle the session interruption by scheduling a recording of the content asset, reallocating network resources, and so on. In some examples, the electronic device may also provide the manifest.
    Type: Application
    Filed: April 3, 2019
    Publication date: October 8, 2020
    Inventor: Brian Stark
  • Publication number: 20190090016
    Abstract: A digital content recording network controller device determines a first content of a set of content to be more likely to be requested by a user of a content access device than a second content of the set of content based on monitored behavior of the user. The device stores the first content in a first storage device of a tiered group of storage devices and stores the second content in a second storage device of the tiered group of storage devices wherein the content access device is located closer to the first storage device than the second storage device. This balances storage load with accessibility, resulting in a faster responding system that does not require as much storage.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 21, 2019
    Inventors: Charles A. Hasek, IV, Brian Stark
  • Patent number: 8225471
    Abstract: Embodiments of an injection molded energy harvesting device are described. In one embodiment, a piezoelectric cantilever is produced via an injection molding method to harvest vibration energy from an environment being sensed. The cantilever device consists of a piezoelectric material member, a proof mass of high density material coupled to the piezoelectric member, and a leadframe for electrical connection. The piezoelectric member is electrically attached to the leadframe with a standard connecting material. The entire assembly is then injection molded with plastic. The plastic encased piezoelectric member forms a cantilever that generates electricity in response to vibration exerted on the proof mass.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: July 24, 2012
    Assignee: Robert Bosch GmbH
    Inventor: Brian Stark
  • Patent number: 8020266
    Abstract: Methods of making an energy harvesting device are described. A case and integrated piezoelectric cantilever to harvest vibration energy from an environment being sensed is produced via a print forming method injection molding method. The cantilever device consists of a piezoelectric material member, and a proof mass of high density material coupled to the piezoelectric member. The print forming method is used to build up the base and walls of the device as well as the neutral layers of the piezoelectric member. Metal layers are printed to form the electrode layers of the piezoelectric member and the electrical contact portions of the device. Passive components can also be formed as part of the layers of the device. The entire assembly can be encapsulated in plastic.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: September 20, 2011
    Assignee: Robert Bosch Gmbh
    Inventors: Markus Ulm, Brian Stark, Matthias Metz
  • Patent number: 7898046
    Abstract: An encapsulated MEMS process including a high-temperature anti-stiction coating that is stable under processing steps at temperatures over 450 C is described. The coating is applied after device release but before sealing vents in the encapsulation layer. Alternatively, an anti-stiction coating may be applied to released devices directly before encapsulation.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: March 1, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Markus Ulm, Brian Stark, Matthias Metz, Tino Fuchs, Franz Laermer, Silvia Kronmueller
  • Publication number: 20100236036
    Abstract: Embodiments of an injection molded energy harvesting device are described. In one embodiment, a piezoelectric cantilever is produced via an injection molding method to harvest vibration energy from an environment being sensed. The cantilever device consists of a piezoelectric material member, a proof mass of high density material coupled to the piezoelectric member, and a leadframe for electrical connection. The piezoelectric member is electrically attached to the leadframe with a standard connecting material. The entire assembly is then injection molded with plastic. The plastic encased piezoelectric member forms a cantilever that generates electricity in response to vibration exerted on the proof mass.
    Type: Application
    Filed: May 27, 2010
    Publication date: September 23, 2010
    Applicant: ROBERT BOSCH GMBH
    Inventor: Brian Stark
  • Patent number: 7671515
    Abstract: There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging. An embodiment further includes location of a piezoelectric material as part of a semiconductor sensing structure. The semiconductor sensing structure, in conjunction with the piezoelectric material, can be used as a sensing device to provide an output signal associated with a sensed event.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: March 2, 2010
    Assignee: Robert Bosch, GmbH
    Inventors: Matthias Metz, Zhiyu Pan, Brian Stark, Markus Ulm, Gary Yama
  • Patent number: 7626316
    Abstract: The invention is a system incorporating a self-tuning resonator and method of self-tuning a resonator within a system. In one embodiment, a method of powering a system with energy harvested from a vibrating surface includes receiving a first mechanical energy at a first driving frequency from the vibrating surface, transferring the received first mechanical energy to a suspended structure within the system, vibrating the suspended structure with the transferred first mechanical energy, passively adjusting the resonant frequency of the suspended structure to a first resonant frequency associated with the first driving frequency by moving a movable mass in response to the movement of the suspended structure, vibrating the adjusted suspended structure with the transferred first mechanical energy, generating electrical energy using the vibrations of the adjusted suspended structure, and powering the system with the generated electrical energy.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: December 1, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Inna Kozinsky, Brian Stark, Robert Candler
  • Patent number: 7625773
    Abstract: A mechanical structure is disposed in a chamber, at least a portion of which is defined by the encapsulation structure. A first method provides a channel cap having at least one preform portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. A second method provides a channel cap having at least one portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. The at least one portion is fabricated apart from the electromechanical device and thereafter affixed to the electromechanical device. A third method provides a channel cap having at least one portion disposed over or in at least a portion of the anti-stiction channel to seal an anti-stiction channel, at least in part. The at least one portion may comprise a wire ball, a stud, metal foil or a solder preform. A device includes a substrate, an encapsulation structure and a mechanical structure.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: December 1, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Markus Lutz, Aaron Partridge, Wilhelm Frey, Markus Ulm, Matthias Metz, Brian Stark, Gary Yama
  • Publication number: 20090278214
    Abstract: An encapsulated MEMS process including a high-temperature anti-stiction coating that is stable under processing steps at temperatures over 450 C is described. The coating is applied after device release but before sealing vents in the encapsulation layer. Alternatively, an anti-stiction coating may be applied to released devices directly before encapsulation.
    Type: Application
    Filed: July 20, 2009
    Publication date: November 12, 2009
    Applicant: ROBERT BOSCH GMBH
    Inventors: Markus Ulm, Brian Stark, Matthias Metz, Tino Fuchs, Franz Laermer, Silvia Kronmueller
  • Patent number: 7582514
    Abstract: An encapsulated MEMS process including a high-temperature anti-stiction coating that is stable under processing steps at temperatures over 450° C. is described. The coating is applied after device release but before sealing vents in the encapsulation layer. Alternatively, an anti-stiction coating may be applied to released devices directly before encapsulation.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: September 1, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Cyril Vancura, Markus Ulm, Brian Stark, Matthias Metz, Tino Fuchs, Franz Laermer, Silvia Kronmueller
  • Patent number: 7563633
    Abstract: An encapsulated MEMS process including a high-temperature anti-stiction coating that is stable under processing steps at temperatures over 450 C is described. The coating is applied after device release but before sealing vents in the encapsulation layer. Alternatively, an anti-stiction coating may be applied to released devices directly before encapsulation.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: July 21, 2009
    Assignee: Robert Bosch GmbH
    Inventors: Markus Ulm, Brian Stark, Matthias Metz, Tino Fuchs, Franz Laermer, Silvia Kronmueller
  • Publication number: 20090085442
    Abstract: The invention is a system incorporating a self-tuning resonator and method of self-tuning a resonator within a system. In one embodiment, a method of powering a system with energy harvested from a vibrating surface includes receiving a first mechanical energy at a first driving frequency from the vibrating surface, transferring the received first mechanical energy to a suspended structure within the system, vibrating the suspended structure with the transferred first mechanical energy, passively adjusting the resonant frequency of the suspended structure to a first resonant frequency associated with the first driving frequency by moving a movable mass in response to the movement of the suspended structure, vibrating the adjusted suspended structure with the transferred first mechanical energy, generating electrical energy using the vibrations of the adjusted suspended structure, and powering the system with the generated electrical energy.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 2, 2009
    Applicant: Robert Bosch GmbH
    Inventors: Inna Kozinsky, Brian Stark, Robert Candler
  • Publication number: 20090065928
    Abstract: A mechanical structure is disposed in a chamber, at least a portion of which is defined by the encapsulation structure. A first method provides a channel cap having at least one preform portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. A second method provides a channel cap having at least one portion disposed over or in at least a portion of an anti-stiction channel to seal the anti-stiction channel, at least in part. The at least one portion is fabricated apart from the electromechanical device and thereafter affixed to the electromechanical device. A third method provides a channel cap having at least one portion disposed over or in at least a portion of the anti-stiction channel to seal an anti-stiction channel, at least in part. The at least one portion may comprise a wire ball, a stud, metal foil or a solder preform. A device includes a substrate, an encapsulation structure and a mechanical structure.
    Type: Application
    Filed: November 4, 2008
    Publication date: March 12, 2009
    Inventors: Markus Lutz, Aaron Partidge, Wilhelm Frey, Markus Ulm, Matthias Metz, Brian Stark, Gary Yama