Patents by Inventor Brian Stewart Randall Armstrong

Brian Stewart Randall Armstrong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210186353
    Abstract: This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker (30), preferably a retro-grate reflector (RGR), is placed on the head or other body organ of interest of a patient (P) during a scan, such as an MRI scan. The marker (30) makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or “pose”, required to track motion of the organ of interest. A detector, preferably a camera (40), observes the marker (30) and continuously extracts its pose. The pose from the camera (40) is sent to the scanner (120) via an RGR processing computer (50) and a scanner control and processing computer (100), allowing for continuous correction of scan planes and position (in real-time) for motion of the patient (P).
    Type: Application
    Filed: December 14, 2020
    Publication date: June 24, 2021
    Inventors: Thomas Michael Ernst, Thomas Edmund Prieto, Brian Stewart Randall Armstrong
  • Patent number: 10869611
    Abstract: This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker (30), preferably a retro-grate reflector (RGR), is placed on the head or other body organ of interest of a patient (P) during a scan, such as an MRI scan. The marker (30) makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or “pose”, required to track motion of the organ of interest. A detector, preferably a camera (40), observes the marker (30) and continuously extracts its pose. The pose from the camera (40) is sent to the scanner (120) via an RGR processing computer (50) and a scanner control and processing computer (100), allowing for continuous correction of scan planes and position (in real-time) for motion of the patient (P).
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: December 22, 2020
    Assignees: The Queen's Medical Center, The University of Hawaii, The Medical Collene of Wisconsin, Inc., UWM Research Foundation, Inc.
    Inventors: Thomas Michael Ernst, Thomas Edmund Prieto, Brian Stewart Randall Armstrong
  • Publication number: 20180249927
    Abstract: This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker (30), preferably a retro-grate reflector (RGR), is placed on the head or other body organ of interest of a patient (P) during a scan, such as an MRI scan. The marker (30) makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or “pose”, required to track motion of the organ of interest. A detector, preferably a camera (40), observes the marker (30) and continuously extracts its pose. The pose from the camera (40) is sent to the scanner (120) via an RGR processing computer (50) and a scanner control and processing computer (100), allowing for continuous correction of scan planes and position (in real-time) for motion of the patient (P).
    Type: Application
    Filed: December 11, 2017
    Publication date: September 6, 2018
    Inventors: Thomas Michael Ernst, Thomas Edmund Prieto, Brian Stewart Randall Armstrong
  • Patent number: 9867549
    Abstract: This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker (30), preferably a retro-grate reflector (RGR), is placed on the head or other body organ of interest of a patient (P) during a scan, such as an MRI scan. The marker (30) makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or “pose”, required to track motion of the organ of interest. A detector, preferably a camera (40), observes the marker (30) and continuously extracts its pose. The pose from the camera (40) is sent to the scanner (120) via an RGR processing computer (50) and a scanner control and processing computer (100), allowing for continuous correction of scan planes and position (in real-time) for motion of the patient (P).
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: January 16, 2018
    Assignees: The Queen's Medical Center, The University of Hawaii, The Medical College of Wisconsin, Inc., UWM Research Foundation, Inc.
    Inventors: Thomas Michael Ernst, Thomas Edmund Prieto, Brian Stewart Randall Armstrong
  • Publication number: 20160166205
    Abstract: This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker (30), preferably a retro-grate reflector (RGR), is placed on the head or other body organ of interest of a patient (P) during a scan, such as an MRI scan. The marker (30) makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or “pose”, required to track motion of the organ of interest. A detector, preferably a camera (40), observes the marker (30) and continuously extracts its pose. The pose from the camera (40) is sent to the scanner (120) via an RGR processing computer (50) and a scanner control and processing computer (100), allowing for continuous correction of scan planes and position (in real-time) for motion of the patient (P).
    Type: Application
    Filed: August 17, 2015
    Publication date: June 16, 2016
    Inventors: Thomas Michael Ernst, Thomas Edmund Prieto, Brian Stewart Randall Armstrong
  • Patent number: 9138175
    Abstract: This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker (30), preferably a retro-grate reflector (RGR), is placed on the head or other body organ of interest of a patient (P) during a scan, such as an MRI scan. The marker (30) makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or “pose”, required to track motion of the organ of interest. A detector, preferably a camera (40), observes the marker (30) and continuously extracts its pose. The pose from the camera (40) is sent to the scanner (120) via an RGR processing computer (50) and a scanner control and processing computer (100), allowing for continuous correction of scan planes and position (in real-time) for motion of the patient (P).
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: September 22, 2015
    Assignees: The Queen's Medical Center, The University of Hawaii, The Medical College of Wisconsin, Inc., UWM Research Foundation, Inc.
    Inventors: Thomas Michael Ernst, Thomas Edmund Prieto, Brian Stewart Randall Armstrong
  • Publication number: 20150227793
    Abstract: This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker (30), preferably a retro-grate reflector (RGR), is placed on the head or other body organ of interest of a patient (P) during a scan, such as an MRI scan. The marker (30) makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or “pose”, required to track motion of the organ of interest. A detector, preferably a camera (40), observes the marker (30) and continuously extracts its pose. The pose from the camera (40) is sent to the scanner (120) via an RGR processing computer (50) and a scanner control and processing computer (100), allowing for continuous correction of scan planes and position (in real-time) for motion of the patient (P).
    Type: Application
    Filed: April 28, 2015
    Publication date: August 13, 2015
    Inventors: Thomas Michael Ernst, Thomas Edmund Prieto, Brian Stewart Randall Armstrong
  • Patent number: 9076212
    Abstract: This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker (30), preferably a retro-grate reflector (RGR), is placed on the head or other body organ of interest of a patient (P) during a scan, such as an MRI scan. The marker (30) makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or “pose”, required to track motion of the organ of interest. A detector, preferably a camera (40), observes the marker (30) and continuously extracts its pose. The pose from the camera (40) is sent to the scanner (120) via an RGR processing computer (50) and a scanner control and processing computer (100), allowing for continuous correction of scan planes and position (in real-time) for motion of the patient (P).
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: July 7, 2015
    Assignees: The Queen's Medical Center, The University of Hawaii, The Medical College of Wisconsin, Inc., UWM Research Foundation, Inc.
    Inventors: Thomas Michael Ernst, Thomas Edmund Prieto, Brian Stewart Randall Armstrong
  • Publication number: 20140037174
    Abstract: This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker (30), preferably a retro-grate reflector (RGR), is placed on the head or other body organ of interest of a patient (P) during a scan, such as an MRI scan. The marker (30) makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or “pose”, required to track motion of the organ of interest. A detector, preferably a camera (40), observes the marker (30) and continuously extracts its pose. The pose from the camera (40) is sent to the scanner (120) via an RGR processing computer (50) and a scanner control and processing computer (100), allowing for continuous correction of scan planes and position (in real-time) for motion of the patient (P).
    Type: Application
    Filed: September 23, 2013
    Publication date: February 6, 2014
    Applicants: THE QUEEN'S MEDICAL CENTER, UWM RESEARCH FOUNDATION, INC., THE MEDICAL COLLEGE OF WISCONSIN, INC., THE UNIVERSITY OF HAWAII
    Inventors: Thomas Michael Ernst, Thomas Edmund Prieto, Brian Stewart Randall Armstrong
  • Patent number: 8571293
    Abstract: This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker (30), preferably a retro-grate reflector (RGR), is placed on the head or other body organ of interest of a patient (P) during a scan, such as an MRI scan. The marker (30) makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or “pose”, required to track motion of the organ of interest. A detector, preferably a camera (40), observes the marker (30) and continuously extracts its pose. The pose from the camera (40) is sent to the scanner (120) via an RGR processing computer (50) and a scanner control and processing computer (100), allowing for continuous correction of scan planes and position (in real-time) for motion of the patient (P).
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: October 29, 2013
    Assignees: The Queen's Medical Center, The University of Hawaii, The Medical College of Wisconsin, Inc., UWM Research Foundation, Inc.
    Inventors: Thomas Michael Ernst, Thomas Edmund Prieto, Brian Stewart Randall Armstrong
  • Patent number: 8374411
    Abstract: This invention relates to a system that adaptively compensates for subject motion in real-time in an imaging system. An object orientation marker, preferably a retro-grate reflector (RGR), is placed on an organ of interest of a patient during a scan, such as an MRI scan. The marker allows measuring the six degrees of freedom or “pose” required to track motion of the organ of interest. A detector, preferably a camera, observes the marker and continuously extracts its pose. The pose from the camera is sent to the scanner via an RGR processing computer and a scanner control and processing computer, allowing for continuous correction of scan planes and position (in real-time) for motion of the patient. This invention also provides for internal calibration and for co-registration over time of the scanner's and tracking system's reference frames to compensate for drift and other inaccuracies that may arise over time.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: February 12, 2013
    Assignees: The Queen's Medical Center, The University of Hawaii, The Medical College of Wisconsin, Inc., UWM Research Foundation, Inc.
    Inventors: Thomas Michael Ernst, Thomas Edmund Prieto, Brian Stewart Randall Armstrong
  • Patent number: 8121361
    Abstract: Current MRI technologies require subjects to remain largely motionless for achieving high quality magnetic resonance (MR) scans, typically for 5-10 minutes at a time. However, lying absolutely still inside the tight MR imager (MRI) tunnel is a difficult task, especially for children, very sick patients, or the mentally ill. Even motion ranging less than 1 mm or 1 degree can corrupt a scan. This invention involves a system that adaptively compensates for subject motion in real-time. An object orientation marker, preferably a retro-grate reflector (RGR), is placed on a patients' head or other body organ of interest during MRI. The RGR makes it possible to measure the six degrees of freedom (x, y, and z-translations, and pitch, yaw, and roll), or “pose”, required to track the organ of interest. A camera-based tracking system observes the marker and continuously extracts its pose.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: February 21, 2012
    Assignees: The Queen's Medical Center, The University of Hawaii, The Medical College of Wisconsin, Inc., UWM Research Foundation, Inc.
    Inventors: Thomas Michael Ernst, Thomas Edmund Prieto, Brian Stewart Randall Armstrong
  • Patent number: 8059267
    Abstract: Improvements to the art of orientation measurement are disclosed whereby the phase angle of each of the plurality of orientation dependent radiation patterns is measured at a single common and unique point of measurement on the observation surface and correspondingly in the image of the observation surface, and whereby a central landmark is located at the point of measurement without loss of accuracy in the determination of the plurality of phase angles of orientation dependent radiation so that the precise point of measurement can be determined in the image without errors introduced by an offset between the positions of landmarks and the position of phase angle measurement.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: November 15, 2011
    Assignee: Go Sensors, LLC
    Inventor: Brian Stewart Randall Armstrong
  • Patent number: 7864044
    Abstract: A system for monitoring an unsupervised worker is provided that includes a plurality of sensors and a base station provided at the monitored location, a service provider server located remotely from the monitored location and operated by a third party service provider, and a computing device associated with a subscriber to the system. At least a portion of the sensed data is sent to and stored by the service provider server so that a report based thereon may, at the request of the system subscriber, be selectively generated and provided to the system subscriber. The computing device is also adapted to generate configuration data for one or more of the sensors and transmit the configuration data to the service provider server. The configuration data is then sent to the base station and used to control the operation of the sensors.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: January 4, 2011
    Assignee: Eaton Corporation
    Inventors: Brian Stewart Randall Armstrong, Jose Alejandro Gutierrez
  • Publication number: 20100046857
    Abstract: Improvements to the art of orientation measurement are disclosed whereby the phase angle of each of the plurality of orientation dependent radiation patterns is measured at a single common and unique point of measurement on the observation surface and correspondingly in the image of the observation surface, and whereby a central landmark is located at the point of measurement without loss of accuracy in the determination of the plurality of phase angles of orientation dependent radiation so that the precise point of measurement can be determined in the image without errors introduced by an offset between the positions of landmarks and the position of phase angle measurement.
    Type: Application
    Filed: August 25, 2009
    Publication date: February 25, 2010
    Inventor: Brian Stewart Randall Armstrong
  • Publication number: 20080284591
    Abstract: A system for monitoring an unsupervised worker is provided that includes a plurality of sensors and a base station provided at the monitored location, a service provider server located remotely from the monitored location and operated by a third party service provider, and a computing device associated with a subscriber to the system. At least a portion of the sensed data is sent to and stored by the service provider server so that a report based thereon may, at the request of the system subscriber, be selectively generated and provided to the system subscriber. The computing device is also adapted to generate configuration data for one or more of the sensors and transmit the configuration data to the service provider server.
    Type: Application
    Filed: May 17, 2007
    Publication date: November 20, 2008
    Inventors: Brian Stewart Randall Armstrong, Jose Alejandro Gutierrez