Patents by Inventor Brian T. HOWARD

Brian T. HOWARD has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220241009
    Abstract: A medical device is configured to deliver pulsed electric field (PEF) energy to tissue and includes an elongated shaft having a proximal portion and a distal portion. A balloon is coupled to the distal portion of the elongated shaft. A plurality of electrodes is disposed on an outer surface of the balloon and configured to apply PEF energy to tissue. The balloon defines one or more irrigation channels proximate to or on the plurality of electrodes, the one or more irrigation channels being configured to irrigate at least one of the plurality of electrodes.
    Type: Application
    Filed: January 26, 2022
    Publication date: August 4, 2022
    Inventors: Brian T. Howard, Timothy G. Laske, Gregory Scott Brumfield
  • Patent number: 11364072
    Abstract: Methods, systems, and devices for enhancing the efficiency and efficacy of energy delivery and tissue mapping. One system includes a treatment element having a plurality of electrodes and an energy generator that is configured to deliver electric energy pulses to the electrodes in a variety of patterns. For example, electrodes may be arranged in closely spaced pairs. The energy generator may deliver mapping energy to each electrode in each pair individually to map tissue and may deliver ablation energy to the electrodes in each pair together, such that each pair is treated like a single electrode, to deliver ablation energy, such as bipolar ablation energy between adjacent pairs. One system includes at least one concave electrode, the configuration of which concentrates the energy and drives it deeper into the tissue. One system includes neutral electrodes between active electrodes, the energy generator selectively coupling the neutral electrodes to alter the ablation pattern.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: June 21, 2022
    Assignee: Medtronic, Inc.
    Inventors: Brian T. Howard, Mark T. Stewart, Damijan Miklav{hacek over (c)}i{hacek over (c)}, Bushan K. Purushothaman, Jeremy M. Stimack
  • Publication number: 20220133389
    Abstract: A method of determining a pulsed field ablation waveform parameter for creating a desired lesion characteristic in cardiac tissue. The method of provides an electrosurgical generator configured to deliver electroporation pulses, the generator configured to: load predetermined waveform parameters (yi); load predetermined modeling data (xi); accept entry of a user inputted desired lesion characteristic (ui); and determine at least one corresponding pulsed field ablation waveform parameter based on (ui), (yi); and (xi).
    Type: Application
    Filed: January 18, 2022
    Publication date: May 5, 2022
    Inventors: Brian T. Howard, Steven J. Fraasch, Mark T. Stewart, John Vandanacker
  • Patent number: 11318306
    Abstract: A method, system, and device for electroporation. A system may include a medical device with a plurality of electrodes borne on an expandable element and an energy generator in communication with the electrodes. The energy generator may have processing circuitry configured to selectively deliver electroporation energy to at least one of the electrodes. The processing circuitry may determine whether an alert condition is present and, if so, cease the delivery of electroporation energy to one or more electrodes identified as the cause of the alert condition and/or prevent the delivery of electroporation energy to the one or more electrodes identified as the cause of the alert condition. The energy generator may also be configured to deliver electroporation energy in a sequence of a plurality of energy delivery patterns to enhance lesion formation.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: May 3, 2022
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Stewart, Brian T. Howard
  • Patent number: 11229478
    Abstract: A method of determining a pulsed field ablation waveform parameter for creating a desired lesion characteristic in cardiac tissue. The method of provides an electrosurgical generator configured to deliver electroporation pulses, the generator configured to: load predetermined waveform parameters (yi); load predetermined modeling data (xi); accept entry of a user inputted desired lesion characteristic (ui); and determine at least one corresponding pulsed field ablation waveform parameter based on (ui), (yi); and (xi).
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: January 25, 2022
    Assignee: Medtronic, Inc.
    Inventors: Brian T. Howard, Steven J. Fraasch, Mark T. Stewart, John Vandanacker
  • Publication number: 20220000550
    Abstract: The present invention advantageously provides a molding device with conductive material for creating a catheter balloon with conductive elements, and methods and systems for manufacturing the catheter balloon with conductive elements. An exemplary method for coupling a plurality of conductive elements to an expandable element may include placing a first portion of a mold proximate a second portion of the mold to define a casting cavity. Conductive material may be deposited into the casting cavity. Polymeric material may be inserted into the casting cavity. The first portion of the mold may be secured to the second portion of the mold. The polymeric material may be expanded to place the polymeric material in contact with the conductive material.
    Type: Application
    Filed: September 15, 2021
    Publication date: January 6, 2022
    Inventors: Mark E. Henschel, Brian T. Howard, Timothy G. Laske, Kenneth C. Gardeski, Gonzalo Martinez, Mark T. Stewart, Lars M. Mattison
  • Publication number: 20210401493
    Abstract: A method of ablating tissue with pulse field ablation energy includes generating a single pulse of energy between a first set of one or more conducting elements of a first polarity and a second set of one or more conducting elements of a second polarity, the single pulse of energy having a first pulse width and consecutively generating pulses of energy with opposite polarity to that of the single pulse of energy, the pulses having a collective pulse width equal to the first pulse width.
    Type: Application
    Filed: June 24, 2021
    Publication date: December 30, 2021
    Inventors: Brian T. Howard, Mark T. Stewart, Lars M. Mattison
  • Patent number: 11207131
    Abstract: Devices, systems, and methods for reverse irrigation of an ablation or treatment site. In one embodiment, a reverse irrigation device comprises at least one ablation electrode and at least one reverse irrigation port, the at least one reverse irrigation port being located at at least one of immediately proximate the at least one ablation electrode and on the at least one ablation electrode, the at least one reverse irrigation port being configured to be in fluid communication with a fluid removal component. A medical system may include an ablation system and a reverse irrigation system that are configured to operate synchronously such that the reverse irrigation system is activated to remove fluid from the ablation site during a period of time during which the ablation system is activated to deliver ablation energy through the at least one ablation electrode to the ablation site.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: December 28, 2021
    Assignee: Medtronic, Inc.
    Inventors: Brian T. Howard, Steven V. Ramberg
  • Publication number: 20210369340
    Abstract: A medical device including a catheter having a proximal portion and a distal portion. A plurality of electrodes is disposed along the distal portion, the plurality of electrodes including a first electrode pair having a first fixed polarity and a second electrode pair having a second fixed polarity different than the first fixed polarity. A first lumen extends through the distal portion, the first lumen includes a first conductor configured to connect to a first electrode of the first electrode pair and a second conductor configured to connect to a second electrode of the first electrode pair. A second lumen extends through the distal portion and separated from the first lumen, the second lumen includes a third conductor configured to connect to a first electrode of the second electrode pair and a fourth conductor configured to connect to a second electrode of the second electrode pair.
    Type: Application
    Filed: May 3, 2021
    Publication date: December 2, 2021
    Inventors: Brian T. Howard, Mark T. Stewart, Lars M. Mattison
  • Patent number: 11052246
    Abstract: A method, system, and device for electroporation. A system may include a medical device with a plurality of electrodes borne on an expandable element and an energy generator in communication with the electrodes. The energy generator may have processing circuitry configured to selectively deliver electroporation energy to at least one of the electrodes. The processing circuitry may determine whether an alert condition is present and, if so, cease the delivery of electroporation energy to one or more electrodes identified as the cause of the alert condition and/or prevent the delivery of electroporation energy to the one or more electrodes identified as the cause of the alert condition. The energy generator may also be configured to deliver electroporation energy in a sequence of a plurality of energy delivery patterns to enhance lesion formation.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: July 6, 2021
    Assignee: Medtronic, Inc.
    Inventors: Mark T. Stewart, Brian T. Howard
  • Publication number: 20210038283
    Abstract: A system and method for the safe delivery of treatment energy to a patient, which includes verification of system integrity before, during, or after the delivery of treatment energy and provides several mechanisms for rapid termination of the delivery of potentially harmful energy to the patient when a fault condition in the device and/or system is identified. The system may include an energy generator having processing circuitry to determine if there is a fault condition in the system and to automatically terminate a delivery of treatment energy when the processing circuitry determines there is a fault condition. The method may generally include performing a series of pre-checks, synchronizing a treatment energy delivery to the proper segment of the heart's depolarization pattern, configuring the system for treatment energy delivery, delivering the treatment energy, and performing post-treatment evaluation.
    Type: Application
    Filed: October 23, 2020
    Publication date: February 11, 2021
    Inventors: Steven J. Fraasch, Catherine R. Condie, Brian T. Howard, Louis Jacob, Paul S. Lam, Trenton J. Rehberger, Mark T. Stewart, Qin Zhang
  • Patent number: 10849677
    Abstract: A system and method for the safe delivery of treatment energy to a patient, which includes verification of system integrity before, during, or after the delivery of treatment energy and provides several mechanisms for rapid termination of the delivery of potentially harmful energy to the patient when a fault condition in the device and/or system is identified. The system may include an energy generator having processing circuitry to determine if there is a fault condition in the system and to automatically terminate a delivery of treatment energy when the processing circuitry determines there is a fault condition. The method may generally include performing a series of pre-checks, synchronizing a treatment energy delivery to the proper segment of the heart's depolarization pattern, configuring the system for treatment energy delivery, delivering the treatment energy, and performing post-treatment evaluation.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: December 1, 2020
    Assignee: Medtronic, Inc.
    Inventors: Steven J. Fraasch, Catherine R. Condie, Brian T. Howard, Louis Jacob, Paul S. Lam, Trenton J. Rehberger, Mark T. Stewart, Qin Zhang
  • Publication number: 20200155838
    Abstract: A method of delivering pulsed electrical energy to a target tissue region includes delivering a first therapeutic pulse, the delivering of the first therapeutic pulse includes delivering a first pulse for a first time period, the first pulse having a first voltage amplitude. A second pulse is delivered immediately after the first pulse for a second time period, the second pulse having a second voltage amplitude configured to electroporate the target tissue region, the second time period being less than the first time period. A third pulse is delivered without delay after the second pulse for a third time period, the third pulse having a third voltage amplitude being at least one from the group consisting of substantially the same as the first amplitude, larger than the first amplitude, and less than the first amplitude.
    Type: Application
    Filed: January 21, 2020
    Publication date: May 21, 2020
    Inventor: Brian T. HOWARD
  • Publication number: 20200138506
    Abstract: Methods and systems for monitoring and modifying pulsed field ablation (PFA) energy delivery to prevent patient safety risks and/or delivery device failure. In particular, some embodiments provide methods and systems for detecting and preventing arcs and arc-induced plasma, and their causal events, during delivery of pulsed field ablation energy, as well as methods and systems for identifying conditions leading to potential delivery device failure and correcting charge imbalance or asymmetry.
    Type: Application
    Filed: November 7, 2019
    Publication date: May 7, 2020
    Inventors: Steven J. FRAASCH, Trenton J. REHBERGER, Qin ZHANG, Lynn A. DAVENPORT, Steven V. RAMBERG, Brian T. HOWARD, Mark T. STEWART, Alexander J. HILL, John VANDANACKER
  • Patent number: 10569081
    Abstract: A method of delivering pulsed electrical energy to a target tissue region includes delivering a first therapeutic pulse, the delivering of the first therapeutic pulse includes delivering a first pulse for a first time period, the first pulse having a first voltage amplitude. A second pulse is delivered immediately after the first pulse for a second time period, the second pulse having a second voltage amplitude configured to electroporate the target tissue region, the second time period being less than the first time period. A third pulse is delivered without delay after the second pulse for a third time period, the third pulse having a third voltage amplitude being at least one from the group consisting of substantially the same as the first amplitude, larger than the first amplitude, and less than the first amplitude.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: February 25, 2020
    Assignee: Medtronic, Inc.
    Inventor: Brian T. Howard
  • Publication number: 20200009378
    Abstract: A method, system, and device for electroporation. A system may include a medical device with a plurality of electrodes borne on an expandable element and an energy generator in communication with the electrodes. The energy generator may have processing circuitry configured to selectively deliver electroporation energy to at least one of the electrodes. The processing circuitry may determine whether an alert condition is present and, if so, cease the delivery of electroporation energy to one or more electrodes identified as the cause of the alert condition and/or prevent the delivery of electroporation energy to the one or more electrodes identified as the cause of the alert condition. The energy generator may also be configured to deliver electroporation energy in a sequence of a plurality of energy delivery patterns to enhance lesion formation.
    Type: Application
    Filed: September 17, 2019
    Publication date: January 9, 2020
    Inventors: Mark T. STEWART, Brian T. HOWARD
  • Publication number: 20190254735
    Abstract: Devices, systems, and methods for more efficiently ablating tissue with pulsed field ablation energy while minimizing collateral injury to non-target tissue. In one embodiment, a system for ablating tissue at a treatment site comprises: an energy delivery device; and a control unit including: a source of impedance-modifying fluid in fluid communication with the energy delivery device; an energy generator in electrical communication with the energy delivery device, the energy generator being configured to transmit energy to the energy delivery device and the energy delivery device being configured to deliver energy to the treatment site; and processing circuitry configured to control delivery of the impedance-modifying fluid from the energy delivery device to the treatment site. In one embodiment, a method for ablating tissue comprises delivering an impedance-modifying fluid to a treatment site and delivering pulsed field ablation energy to the treatment site.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 22, 2019
    Inventors: Mark T. STEWART, Brian T. HOWARD
  • Publication number: 20190223948
    Abstract: A device, system, and method for ablating tissue with pulsed field ablation energy while minimizing stimulation of skeletal muscle and nerves, as well as minimizing damage to non-targeted tissue. Some embodiments provide a device, system, and method for delivering pulsed field ablation energy to tissue from at least one energy delivery electrode on an energy delivery device to at least one energy return electrode, which may be located on the energy delivery device and/or on a sheath or secondary device. The at least one energy delivery electrode has a surface area for the application of energy that is smaller than the surface area for the receipt or return of energy of the at least one energy return electrode.
    Type: Application
    Filed: January 18, 2019
    Publication date: July 25, 2019
    Inventors: Mark T. STEWART, Brian T. HOWARD
  • Publication number: 20190209235
    Abstract: A medical device for directionally focusing energy to a treatment site, the medical device including a shaft having an elongated body defining a proximal portion and a distal portion opposite the proximal portion, the distal portion including at least one electrode having a contact portion and a permeable sheath at least partially surrounding the at least one electrode, the permeable sheath and the at least one electrode defining an insulation cavity, the permeable sheath being impermeable to an insulation material introduced to the insulation cavity from a fluid source configured to be coupled to the shaft.
    Type: Application
    Filed: January 8, 2019
    Publication date: July 11, 2019
    Inventors: Mark T. STEWART, Brian T. HOWARD
  • Publication number: 20190038171
    Abstract: Devices, systems, and methods relating to a low-voltage, pre-treatment pulse routine for evaluating a potential for non-target tissue damage from the delivery of energy, such as electroporation energy to an area of target tissue. In one embodiment, a medical system includes a medical device having a treatment element; and a control unit in communication with the medical device, the control unit being configured to: deliver a low-voltage, pre-treatment pulse routine through the treatment element to an area of target tissue; determine whether the low-voltage, pre-treatment pulse routine has a stimulation effect on an area of non-target tissue; and deliver an ablation energy routine through the treatment element to the area of target tissue when the control unit determines that the low-voltage, pre-treatment pulse routine does not have a stimulation effect on the area of non-target tissue.
    Type: Application
    Filed: August 4, 2017
    Publication date: February 7, 2019
    Inventor: Brian T. HOWARD