Patents by Inventor Brian T. Schowengerdt

Brian T. Schowengerdt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190178638
    Abstract: A waveguide apparatus includes a planar waveguide and at least one optical diffraction element (DOE) that provides a plurality of optical paths between an exterior and interior of the planar waveguide. A phase profile of the DOE may combine a linear diffraction grating with a circular lens, to shape a wave front and produce beams with desired focus. Waveguide apparati may be assembled to create multiple focal planes. The DOE may have a low diffraction efficiency, and planar waveguides may be transparent when viewed normally, allowing passage of light from an ambient environment (e.g., real world) useful in AR systems. Light may be returned for temporally sequentially passes through the planar waveguide. The DOE(s) may be fixed or may have dynamically adjustable characteristics. An optical coupler system may couple images to the waveguide apparatus from a projector, for instance a biaxially scanning cantilevered optical fiber tip.
    Type: Application
    Filed: February 14, 2019
    Publication date: June 13, 2019
    Applicant: MAGIC LEAP, INC.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Mathew D. Watson
  • Publication number: 20190170932
    Abstract: Techniques are described for using confinement structures and/or pattern gratings to reduce or prevent the wicking of sealant polymer (e.g., glue) into the optically active areas of a multi-layered optical assembly. A multi-layered optical structure may include multiple layers of substrate imprinted with waveguide grating patterns. The multiple layers may be secured using an edge adhesive, such as a resin, epoxy, glue, and so forth. A confinement structure such as an edge pattern may be imprinted along the edge of each layer to control and confine the capillary flow of the edge adhesive and prevent the edge adhesive from wicking into the functional waveguide grating patterns of the layers. Moreover, the edge adhesive may be carbon doped or otherwise blackened to reduce the reflection of light off the edge back into the interior of the layer, thus improving the optical function of the assembly.
    Type: Application
    Filed: February 7, 2019
    Publication date: June 6, 2019
    Inventors: Michael Nevin Miller, Frank Y. Xu, Vikramjit Singh, Eric C. Browy, Jason Schaefer, Robert D. TeKolste, Victor Kai Liu, Samarth Bhargava, Jeffrey Dean Schmulen, Brian T. Schowengerdt
  • Patent number: 10304246
    Abstract: One embodiment is directed to a user display device comprising a housing frame mountable on the head of the user, a lens mountable on the housing frame and a projection sub system coupled to the housing frame to determine a location of appearance of a display object in a field of view of the user based at least in part on at least one of a detection of a head movement of the user and a prediction of a head movement of the user, and to project the display object to the user based on the determined location of appearance of the display object.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: May 28, 2019
    Assignee: MAGIC LEAP, INC.
    Inventors: Brian T. Schowengerdt, Samuel A. Miller
  • Publication number: 20190154914
    Abstract: One embodiment is directed to a compact system for scanning electromagnetic imaging radiation, comprising a first waveguide and a second waveguide, each of which is operatively coupled to at least one electromagnetic radiation source and configured such that output from the first and second waveguides is luminance modulated and scanned along one or more axes to form at least a portion of an image.
    Type: Application
    Filed: January 25, 2019
    Publication date: May 23, 2019
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. SCHOWENGERDT, Matthew D. WATSON
  • Patent number: 10295338
    Abstract: A method of generating map data comprises capturing an image of a field of view of a user, extracting a set of map points based on the captured image, identifying respective sets of sparse points and dense points based on the extracted map points, performing point normalization of the respective sets of sparse points and dense points, generating sparse and dense point descriptors for the respective sets of sparse points and dense points, and combining the sparse point descriptors and dense point descriptors to store as map data.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: May 21, 2019
    Assignee: MAGIC LEAP, INC.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Mathew D. Watson
  • Patent number: 10288419
    Abstract: A waveguide apparatus includes a planar waveguide and at least one optical diffraction element (DOE) that provides a plurality of optical paths between an exterior and interior of the planar waveguide. A phase profile of the DOE may combine a linear diffraction grating with a circular lens, to shape a wave front and produce beams with desired focus. Waveguide apparati may be assembled to create multiple focal planes. The DOE may have a low diffraction efficiency, and planar waveguides may be transparent when viewed normally, allowing passage of light from an ambient environment (e.g., real world) useful in AR systems. Light may be returned for temporally sequentially passes through the planar waveguide. The DOE(s) may be fixed or may have dynamically adjustable characteristics. An optical coupler system may couple images to the waveguide apparatus from a projector, for instance a biaxially scanning cantilevered optical fiber tip.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: May 14, 2019
    Assignee: MAGIC LEAP, INC.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Mathew D. Watson
  • Publication number: 20190121142
    Abstract: Architectures are provided for selectively outputting light for forming images, the light having different wavelengths and being outputted with low levels of crosstalk. In some embodiments, light is incoupled into a waveguide and deflected to propagate in different directions, depending on wavelength. The incoupled light then outcoupled by outcoupling optical elements that outcouple light based on the direction of propagation of the light. In some other embodiments, color filters are between a waveguide and outcoupling elements. The color filters limit the wavelengths of light that interact with and are outcoupled by the outcoupling elements. In yet other embodiments, a different waveguide is provided for each range of wavelengths to be outputted. Incoupling optical elements selectively incouple light of the appropriate range of wavelengths into a corresponding waveguide, from which the light is outcoupled.
    Type: Application
    Filed: December 12, 2018
    Publication date: April 25, 2019
    Inventors: ROBERT DALE TEKOLSTE, MICHAEL ANTHONY KLUG, BRIAN T. SCHOWENGERDT
  • Patent number: 10261318
    Abstract: Architectures are provided for selectively outputting light for forming images, the light having different wavelengths and being outputted with low levels of crosstalk. In some embodiments, light is incoupled into a waveguide and deflected to propagate in different directions, depending on wavelength. The incoupled light then outcoupled by outcoupling optical elements that outcouple light based on the direction of propagation of the light. In some other embodiments, color filters are between a waveguide and outcoupling elements. The color filters limit the wavelengths of light that interact with and are outcoupled by the outcoupling elements. In yet other embodiments, a different waveguide is provided for each range of wavelengths to be outputted. Incoupling optical elements selectively incouple light of the appropriate range of wavelengths into a corresponding waveguide, from which the light is outcoupled.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: April 16, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Robert Dale TeKolste, Michael Anthony Klug, Brian T. Schowengerdt
  • Patent number: 10254454
    Abstract: Architectures are provided for selectively incoupling one or more streams of light from a multiplexed light stream into a waveguide. The multiplexed light stream can have light with different characteristics (e.g., different wavelengths and/or different polarizations). The waveguide can comprise in-coupling elements that can selectively couple one or more streams of light from the multiplexed light stream into the waveguide while transmitting one or more other streams of light from the multiplexed light stream.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: April 9, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Brian T. Schowengerdt, Michael Nevin Miller, Vikramjit Singh, Christophe Peroz, Pierre St. Hilaire, Jie Sun
  • Patent number: 10254483
    Abstract: A fiber optic element of a fiber scanning system includes a motion actuator having longitudinal side members, an internal orifice, a first support region, a central region, and a second support region. The fiber optic element also includes a first fiber optic cable passing through the internal orifice and having a first fiber joint as well as a second fiber optic cable passing through the internal orifice. The second fiber optic cable has a second fiber joint disposed in the central region and spliced to the first fiber joint, a second coupling region, a light delivery region, and a light emission tip. The light delivery region is characterized by a first diameter and the light emission tip is characterized by a second diameter less than the first diameter.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: April 9, 2019
    Assignee: MAGIC LEAP, INC.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, Charles David Melville
  • Patent number: 10241260
    Abstract: Techniques are described for using confinement structures and/or pattern gratings to reduce or prevent the wicking of sealant polymer (e.g., glue) into the optically active areas of a multi-layered optical assembly. A multi-layered optical structure may include multiple layers of substrate imprinted with waveguide grating patterns. The multiple layers may be secured using an edge adhesive, such as a resin, epoxy, glue, and so forth. A confinement structure such as an edge pattern may be imprinted along the edge of each layer to control and confine the capillary flow of the edge adhesive and prevent the edge adhesive from wicking into the functional waveguide grating patterns of the layers. Moreover, the edge adhesive may be carbon doped or otherwise blackened to reduce the reflection of light off the edge back into the interior of the layer, thus improving the optical function of the assembly.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: March 26, 2019
    Assignee: Molecular Imprints, Inc.
    Inventors: Michael Nevin Miller, Frank Y. Xu, Vikramjit Singh, Eric C. Browy, Jason Schaefer, Robert D. TeKolste, Victor Kai Liu, Samarth Bhargava, Jeffrey Dean Schmulen, Brian T. Schowengerdt
  • Patent number: 10241263
    Abstract: One embodiment is directed to a compact system for scanning electromagnetic imaging radiation, comprising a first waveguide and a second waveguide, each of which is operatively coupled to at least one electromagnetic radiation source and configured such that output from the first and second waveguides is luminance modulated and scanned along one or more axes to form at least a portion of an image.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: March 26, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Matthew D. Watson
  • Patent number: 10228242
    Abstract: A waveguide apparatus includes a planar waveguide and at least one optical diffraction element (DOE) that provides a plurality of optical paths between an exterior and interior of the planar waveguide. A phase profile of the DOE may combine a linear diffraction grating with a circular lens, to shape a wave front and produce beams with desired focus. Waveguide apparati may be assembled to create multiple focal planes. The DOE may have a low diffraction efficiency, and planar waveguides may be transparent when viewed normally, allowing passage of light from an ambient environment (e.g., real world) useful in AR systems. Light may be returned for temporally sequentially passes through the planar waveguide. The DOE(s) may be fixed or may have dynamically adjustable characteristics. An optical coupler system may couple images to the waveguide apparatus from a projector, for instance a biaxially scanning cantilevered optical fiber tip.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: March 12, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Mathew D. Watson
  • Publication number: 20190033517
    Abstract: One embodiment is directed to a compact system for scanning electromagnetic imaging radiation, comprising a first waveguide and a second waveguide, each of which is operatively coupled to at least one electromagnetic radiation source and configured such that output from the first and second waveguides is luminance modulated and scanned along one or more axes to form at least a portion of an image.
    Type: Application
    Filed: October 3, 2018
    Publication date: January 31, 2019
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Matthew D. Watson
  • Patent number: 10176639
    Abstract: A virtual image generation system and method is provided. A plurality of synthetic image frames of the three-dimensional scene are rendered, and sequentially displayed to an end user. Each of the displayed image frames has a non-uniform resolution distribution.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: January 8, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Lionel Ernest Edwin, Ivan L. Yeoh, Aaron Mark Schuelke, Samuel A. Miller
  • Publication number: 20180374266
    Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.
    Type: Application
    Filed: May 16, 2018
    Publication date: December 27, 2018
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, David Tinch, Ivan Li Chuen Yeoh, John Graham Macnamara, Lionel Ernest Edwin, Michael Anthony Klug, William Hudson Welch
  • Patent number: 10156725
    Abstract: Architectures are provided for selectively outputting light for forming images, the light having different wavelengths and being outputted with low levels of crosstalk. In some embodiments, light is incoupled into a waveguide and deflected to propagate in different directions, depending on wavelength. The incoupled light then outcoupled by outcoupling optical elements that outcouple light based on the direction of propagation of the light. In some other embodiments, color filters are between a waveguide and outcoupling elements. The color filters limit the wavelengths of light that interact with and are outcoupled by the outcoupling elements. In yet other embodiments, a different waveguide is provided for each range of wavelengths to be outputted. Incoupling optical elements selectively incouple light of the appropriate range of wavelengths into a corresponding waveguide, from which the light is outcoupled.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: December 18, 2018
    Assignee: MAGIC LEAP, INC.
    Inventors: Robert Dale TeKolste, Michael Anthony Klug, Brian T. Schowengerdt
  • Patent number: 10151875
    Abstract: One embodiment is directed to a compact system for scanning electromagnetic imaging radiation, comprising a first waveguide and a second waveguide, each of which is operatively coupled to at least one electromagnetic radiation source and configured such that output from the first and second waveguides is luminance modulated and scanned along one or more axes to form at least a portion of an image.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: December 11, 2018
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Matthew D. Watson
  • Patent number: 10134186
    Abstract: One embodiment is directed to a user display device comprising a housing frame mountable on the head of the user, a lens mountable on the housing frame and a projection sub system coupled to the housing frame to determine a location of appearance of a display object in a field of view of the user based at least in part on at least one of a detection of a head movement of the user and a prediction of a head movement of the user, and to project the display object to the user based on the determined location of appearance of the display object.
    Type: Grant
    Filed: May 3, 2015
    Date of Patent: November 20, 2018
    Assignee: MAGIC LEAP, INC.
    Inventors: Brian T. Schowengerdt, Samuel A. Miller
  • Publication number: 20180275415
    Abstract: A wearable display device suitable for use in an augmented reality environment is disclosed. The wearable display device can include a projector configured to project light through diffractive optical elements that then distributed the light to multiple display regions. Each of the display regions can be arranged to project light out of the wearable display device towards an eye of a user. Since each of the display regions are positioned in different locations with respect to an eye of a user, the result is that each display region directs light in a different direction. In this way the apparent field of view for a user of the wearable display can be substantially increased.
    Type: Application
    Filed: March 22, 2018
    Publication date: September 27, 2018
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Ivan Li Chuen Yeoh, Lionel Ernest Edwin