Patents by Inventor Brian T. Schowengerdt

Brian T. Schowengerdt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210286180
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: April 12, 2021
    Publication date: September 16, 2021
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Publication number: 20210278587
    Abstract: A waveguide display system may include an eyepiece waveguide that can have a first surface and a second surface, the waveguide including an incoupling diffractive optical element (DOE) and an outcoupling DOE. The waveguide display system may include a light source and a scanning mirror, and may include reflective and collimating optical elements. The incoupling DOE can be configured to selectively propagate incident light beams to the outcoupling DOE in the waveguide through total internal reflection (TIR).
    Type: Application
    Filed: March 24, 2021
    Publication date: September 9, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, Steven Alexander-Boyd Hickman, Charles David Melville, Samuel Scott Frank
  • Publication number: 20210278673
    Abstract: A display assembly suitable for use with a virtual or augmented reality headset is described and includes the following: an input coupling grating; a scanning mirror configured to rotate about two or more different axes of rotation; an optical element; and optical fibers, each of which have a light emitting end disposed between the input coupling grating and the scanning mirror and oriented such that light emitted from the light emitting end is refracted through at least a portion of the optical element, reflected off the scanning mirror, refracted back through the optical element and into the input coupling grating. The scanning mirror can be built upon a MEMS type architecture.
    Type: Application
    Filed: March 24, 2021
    Publication date: September 9, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Charles David Melville, Brian T. Schowengerdt, Mathew D. Watson
  • Publication number: 20210278686
    Abstract: A method of displaying an image to a viewer includes operating a fiber scanning projector to produce a scanned light beam incident on an incoupling diffractive optical element (DOE) coupled to a waveguide. A portion of the light beam is reflected via a reflective back surface of the incoupling DOE. The reflected portion of the scanned light beam is incident on a reflective optical element, which reflects the light beam back to the incoupling DOE. The returning light beam is then diffracted by the incoupling DOE to produce a second pass first diffracted light beam. The second pass first diffracted light beam is propagated within the planar waveguide via total internal reflection (TIR) to an outcoupling DOE, which directs a portion of the second pass first diffracted light beam toward an eye of a viewer to display the image to the user.
    Type: Application
    Filed: March 23, 2021
    Publication date: September 9, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson
  • Publication number: 20210271080
    Abstract: An augmented reality system includes a light source configured to generate a virtual light beam. The system also includes a light guiding optical element having an entry portion, an exit portion, and a surface having a diverter disposed adjacent thereto. The light source and the light guiding optical element are configured such that the virtual light beam enters the light guiding optical element through the entry portion, propagates through the light guiding optical element by at least partially reflecting off of the surface, and exits the light guiding optical element through the exit portion. The light guiding optical element is transparent to a first real-world light beam. The diverter is configured to modify a light path of a second real-world light beam at the surface.
    Type: Application
    Filed: May 12, 2021
    Publication date: September 2, 2021
    Applicant: MAGIC LEAP, INC.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson
  • Patent number: 11106041
    Abstract: An augmented reality display system includes a pair of variable focus lens elements that sandwich a waveguide stack. One of the lens elements is positioned between the waveguide stack and a user's eye to correct for refractive errors in the focusing of light projected from the waveguide stack to that eye. The lens elements may also be configured to provide appropriate optical power to place displayed virtual content on a desired depth plane. The other lens element is between the ambient environment and the waveguide stack, and is configured to provide optical power to compensate for aberrations in the transmission of ambient light through the waveguide stack and the lens element closest to the eye. In addition, an eye-tracking system monitors the vergence of the user's eyes and automatically and continuously adjusts the optical powers of the pair of lens elements based on the determined vergence of those eyes.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: August 31, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Samuel A. Miller, Paul M. Greco, Brian T. Schowengerdt
  • Patent number: 11107288
    Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: August 31, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, David Tinch, Ivan Li Chuen Yeoh, John Graham Macnamara, Lionel Ernest Edwin, Michael Anthony Klug, William Hudson Welch
  • Publication number: 20210239992
    Abstract: A display subsystem for a virtual image generation system for use by an end user comprises a planar waveguide apparatus, an optical fiber, at least one light source configured for emitting light from a distal end of the optical fiber, and a collimation element mounted to a distal end of the optical fiber for collimating light from the optical fiber. The virtual image generation system further comprises a mechanical drive assembly to which the optical fiber is mounted to the drive assembly. The mechanical drive assembly is configured for displacing the distal end of the optical fiber, along with the collimation element, in accordance with a scan pattern. The virtual image generation system further comprises an optical waveguide input apparatus configured for directing the collimated light from the collimation element down the planar waveguide apparatus, such that the planar waveguide apparatus displays image frames to the end user.
    Type: Application
    Filed: April 20, 2021
    Publication date: August 5, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Lionel Ernest Edwin, Ivan Yeoh, Aaron Mark Schuelke, William Hudson Welch, John Graham Macnamara
  • Publication number: 20210240018
    Abstract: A wearable augmented reality head-mounted display system can be configured to pass light from the world forward a wearer wearing the head-mounted system into an eye of the wearer. The head-mounted display system can include an optical display that is configured to output light to form an image. The system may include one or more waveguides that are disposed to receiving the light from the display. A variable power reflector can be disposed on the forward side of the one or more waveguides. The reflector can be configured to have an optical power that is adjustable upon application of an electrical signal.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 5, 2021
    Inventors: Brian T. Schowengerdt, John Graham Macnamara, Chulwoo Oh
  • Publication number: 20210223542
    Abstract: A fiber scanning system includes a fiber optic element having an actuation region and a motion actuator mechanically coupled to the fiber optic element. A continuous bond line is present between the actuation region and the motion actuator. The fiber scanning system also includes a retention collar mechanically coupled to the motion actuator.
    Type: Application
    Filed: December 18, 2020
    Publication date: July 22, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Emma Rae Mullen, Mina Rohani, Benjamin John Kuehn, Abhijith Rajiv, Brian T. Schowengerdt, Sarah Colline McQuaide
  • Patent number: 11067732
    Abstract: Methods of manufacturing a liquid crystal device including depositing a layer of liquid crystal material on a substrate and imprinting a pattern on the layer of liquid crystal material using an imprint template are disclosed. The liquid crystal material can be jet deposited. The imprint template can include surface relief features, Pancharatnam-Berry Phase Effect (PBPE) structures or diffractive structures. The liquid crystal device manufactured by the methods described herein can be used to manipulate light, such as for beam steering, wavefront shaping, separating wavelengths and/or polarizations, and combining different wavelengths and/or polarizations.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: July 20, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Brian T. Schowengerdt, Michael Nevin Miller, Vikramjit Singh, Christophe Peroz, Pierre St. Hilaire, Jie Sun
  • Patent number: 11067797
    Abstract: An augmented reality system includes a light source configured to generate a virtual light beam. The system also includes a light guiding optical element having an entry portion, an exit portion, and a surface having a diverter disposed adjacent thereto. The light source and the light guiding optical element are configured such that the virtual light beam enters the light guiding optical element through the entry portion, propagates through the light guiding optical element by at least partially reflecting off of the surface, and exits the light guiding optical element through the exit portion. The light guiding optical element is transparent to a first real-world light beam. The diverter is configured to modify a light path of a second real-world light beam at the surface.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: July 20, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson
  • Patent number: 11060858
    Abstract: A waveguide apparatus includes a planar waveguide and at least one optical diffraction element (DOE) that provides a plurality of optical paths between an exterior and interior of the planar waveguide. A phase profile of the DOE may combine a linear diffraction grating with a circular lens, to shape a wave front and produce beams with desired focus. Waveguide apparati may be assembled to create multiple focal planes. The DOE may have a low diffraction efficiency, and planar waveguides may be transparent when viewed normally, allowing passage of light from an ambient environment (e.g., real world) useful in AR systems. Light may be returned for temporally sequentially passes through the planar waveguide. The DOE(s) may be fixed or may have dynamically adjustable characteristics. An optical coupler system may couple images to the waveguide apparatus from a projector, for instance a biaxially scanning cantilevered optical fiber tip.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: July 13, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Mathew D. Watson
  • Publication number: 20210208406
    Abstract: Disclosed is an improved diffraction structure for 3D display systems. The improved diffraction structure includes an intermediate layer that resides between a waveguide substrate and a top grating surface. The top grating surface comprises a first material that corresponds to a first refractive index value, the underlayer comprises a second material that corresponds to a second refractive index value, and the substrate comprises a third material that corresponds to a third refractive index value.
    Type: Application
    Filed: March 23, 2021
    Publication date: July 8, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Robert D. TEKOLSTE, Michael A. KLUG, Paul M. GRECO, Brian T. SCHOWENGERDT
  • Patent number: 11054636
    Abstract: A method of operating a multi-axis fiber scanner having a base including a base plane includes providing a source of electromagnetic radiation, directing the electromagnetic radiation through a fiber link that passes through the base plane of the base along a longitudinal axis orthogonal to the base plane, and supporting a retention collar positioned a distance from the base plane. The method also includes actuating a first piezoelectric actuator among a plurality of piezoelectric actuators to decrease the distance between a first side of the base and the retention collar, actuating a second piezoelectric actuator among the plurality of piezoelectric actuators to increase the distance between a second side of the base and the retention collar, and scanning the fiber link in a scanning plane.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: July 6, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, Charles David Melville, William Andrew Lee
  • Publication number: 20210199868
    Abstract: Architectures are provided for selectively incoupling one or more streams of light from a multiplexed light stream into a waveguide. The multiplexed light stream can have light with different characteristics (e.g., different wavelengths and/or different polarizations). The waveguide can comprise in-coupling elements that can selectively couple one or more streams of light from the multiplexed light stream into the waveguide while transmitting one or more other streams of light from the multiplexed light stream.
    Type: Application
    Filed: March 12, 2021
    Publication date: July 1, 2021
    Inventors: Michael Anthony Klug, Brian T. Schowengerdt, Michael Nevin Miller, Vikramjit Singh, Christophe Peroz, Pierre St. Hilaire, Jie Sun
  • Patent number: 11042032
    Abstract: Architectures are provided for selectively outputting light for forming images, the light having different wavelengths and being outputted with low levels of crosstalk. In some embodiments, light is incoupled into a waveguide and deflected to propagate in different directions, depending on wavelength. The incoupled light then outcoupled by outcoupling optical elements that outcouple light based on the direction of propagation of the light. In some other embodiments, color filters are between a waveguide and outcoupling elements. The color filters limit the wavelengths of light that interact with and are outcoupled by the outcoupling elements. In yet other embodiments, a different waveguide is provided for each range of wavelengths to be outputted. Incoupling optical elements selectively incouple light of the appropriate range of wavelengths into a corresponding waveguide, from which the light is outcoupled.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: June 22, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Robert Dale TeKolste, Michael Anthony Klug, Brian T. Schowengerdt
  • Publication number: 20210181500
    Abstract: A visual perception device has a look-up table stored in a laser driver chip. The look-up table includes relational gain data to compensate for brighter areas of a laser pattern wherein pixels are located more closely than areas where the pixels are further apart and to compensate for differences in intensity of individual pixels when the intensities of pixels are altered due to design characteristics of an eye piece.
    Type: Application
    Filed: July 2, 2019
    Publication date: June 17, 2021
    Applicant: Magic Leap, Inc.
    Inventors: Richard Stephen JOHNSTON, Brian T. SCHOWENGERDT
  • Patent number: 11036001
    Abstract: One embodiment is directed to a compact system for scanning electromagnetic imaging radiation, comprising a first waveguide and a second waveguide, each of which is operatively coupled to at least one electromagnetic radiation source and configured such that output from the first and second waveguides is luminance modulated and scanned along one or more axes to form at least a portion of an image.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: June 15, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Matthew D. Watson
  • Patent number: 11029147
    Abstract: A method for facilitating surgery using an augmented reality system, comprises retrieving patient data relating to a surgical procedure on a patient, generating virtual content comprising a virtual three-dimensional (3D) anatomical model based on the patient data, and displaying the virtual content, such that, when viewed by the first user, the virtual 3D anatomical model appears to be fixed at a physical location, whereby the virtual 3D anatomical model may be viewed by the first user from any angle or orientation merely by walking around the physical location.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: June 8, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Mathew D. Watson