Patents by Inventor Brian T. Schowengerdt

Brian T. Schowengerdt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11935206
    Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.
    Type: Grant
    Filed: April 5, 2023
    Date of Patent: March 19, 2024
    Assignee: Magic Leap, Inc
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, David Tinch, Ivan Li Chuen Yeoh, John Graham Macnamara, Lionel Ernest Edwin, Michael Anthony Klug, William Hudson Welch
  • Publication number: 20240085707
    Abstract: Augmented reality and virtual reality display systems and devices are configured for efficient use of projected light. In some aspects, a display system includes a light projection system and a head-mounted display configured to project light into an eye of the user to display virtual image content. The head-mounted display includes at least one waveguide comprising a plurality of in-coupling regions each configured to receive, from the light projection system, light corresponding to a portion of the user's field of view and to in-couple the light into the waveguide; and a plurality of out-coupling regions configured to out-couple the light out of the waveguide to display the virtual content, wherein each of the out-coupling regions are configured to receive light from different ones of the in-coupling regions. In some implementations, each in-coupling region has a one-to-one correspondence with a unique corresponding out-coupling region.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventor: Brian T. SCHOWENGERDT
  • Publication number: 20240078771
    Abstract: One embodiment is directed to a user display device comprising a housing frame mountable on the head of the user, a lens mountable on the housing frame and a projection sub system coupled to the housing frame to determine a location of appearance of a display object in a field of view of the user based at least in part on at least one of a detection of a head movement of the user and a prediction of a head movement of the user, and to project the display object to the user based on the determined location of appearance of the display object.
    Type: Application
    Filed: November 10, 2023
    Publication date: March 7, 2024
    Applicant: MAGIC LEAP, INC.
    Inventors: Brian T. Schowengerdt, Samuel A. Miller
  • Patent number: 11912566
    Abstract: A semiconductor substrate includes a first semiconductor layer, a first dielectric layer coupled to the first semiconductor layer, and a second semiconductor layer coupled to the first dielectric layer. The second semiconductor layer includes a base portion substantially aligned with the first dielectric layer and a cantilever portion protruding from an end of the first dielectric layer. The cantilever portion includes a tapered surface tapering from a bottom surface of the second semiconductor layer toward a top surface of the second semiconductor layer.
    Type: Grant
    Filed: April 24, 2023
    Date of Patent: February 27, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Steven Alexander-Boyd Hickman, Sarah Colline McQuaide, Abhijith Rajiv, Brian T. Schowengerdt, Charles David Melville
  • Patent number: 11906739
    Abstract: A display subsystem for a virtual image generation system for use by an end user comprises a planar waveguide apparatus, an optical fiber, at least one light source configured for emitting light from a distal end of the optical fiber, and a collimation element mounted to a distal end of the optical fiber for collimating light from the optical fiber. The virtual image generation system further comprises a mechanical drive assembly to which the optical fiber is mounted to the drive assembly. The mechanical drive assembly is configured for displacing the distal end of the optical fiber, along with the collimation element, in accordance with a scan pattern. The virtual image generation system further comprises an optical waveguide input apparatus configured for directing the collimated light from the collimation element down the planar waveguide apparatus, such that the planar waveguide apparatus displays image frames to the end user.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: February 20, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Lionel Ernest Edwin, Ivan Yeoh, Aaron Mark Schuelke, William Hudson Welch, John Graham Macnamara
  • Patent number: 11907418
    Abstract: Techniques for tracking eye movement in an augmented reality system identify a plurality of base images of an object or a portion thereof. A search image may be generated based at least in part upon at least some of the plurality of base images. A deep learning result may be generated at least by performing a deep learning process on a base image using a neural network in a deep learning mode. A captured image may be localized at least by performing an image registration process on the captured image and the search image using a Kalman filter model and the deep learning result.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: February 20, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Eric J. Seibel, Steven L. Brunton, Chen Gong, Brian T. Schowengerdt
  • Publication number: 20240045215
    Abstract: An augmented reality display system is configured to direct a plurality of parallactically-disparate intra-pupil images into a viewer's eye. The parallactically-disparate intra-pupil images provide different parallax views of a virtual object, and impinge on the pupil from different angles. In the aggregate, the wavefronts of light forming the images approximate a continuous divergent wavefront and provide selectable accommodation cues for the user, depending on the amount of parallax disparity between the intra-pupil images. The amount of parallax disparity is selected using a light source that outputs light for different images from different locations, with spatial differences in the locations of the light output providing differences in the paths that the light takes to the eye, which in turn provide different amounts of parallax disparity.
    Type: Application
    Filed: October 19, 2023
    Publication date: February 8, 2024
    Inventors: Michael Anthony KLUG, Robert KONRAD, Gordon WETZSTEIN, Brian T. SCHOWENGERDT, Michal Beau Dennison VAUGHN
  • Patent number: 11860370
    Abstract: Augmented reality and virtual reality display systems and devices are configured for efficient use of projected light. In some aspects, a display system includes a light projection system and a head-mounted display configured to project light into an eye of the user to display virtual image content. The head-mounted display includes at least one waveguide comprising a plurality of in-coupling regions each configured to receive, from the light projection system, light corresponding to a portion of the user's field of view and to in-couple the light into the waveguide; and a plurality of out-coupling regions configured to out-couple the light out of the waveguide to display the virtual content, wherein each of the out-coupling regions are configured to receive light from different ones of the in-coupling regions. In some implementations, each in-coupling region has a one-to-one correspondence with a unique corresponding out-coupling region.
    Type: Grant
    Filed: December 19, 2022
    Date of Patent: January 2, 2024
    Assignee: Magic Leap, Inc.
    Inventor: Brian T. Schowengerdt
  • Patent number: 11854150
    Abstract: One embodiment is directed to a user display device comprising a housing frame mountable on the head of the user, a lens mountable on the housing frame and a projection sub system coupled to the housing frame to determine a location of appearance of a display object in a field of view of the user based at least in part on at least one of a detection of a head movement of the user and a prediction of a head movement of the user, and to project the display object to the user based on the determined location of appearance of the display object.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: December 26, 2023
    Assignee: MAGIC LEAP, INC.
    Inventors: Brian T. Schowengerdt, Samuel A. Miller
  • Publication number: 20230408823
    Abstract: Architectures are provided for selectively outputting light for forming images, the light having different wavelengths and being outputted with low levels of crosstalk. In some embodiments, light is incoupled into a waveguide and deflected to propagate in different directions, depending on wavelength. The incoupled light then outcoupled by outcoupling optical elements that outcouple light based on the direction of propagation of the light. In some other embodiments, color filters are between a waveguide and outcoupling elements. The color filters limit the wavelengths of light that interact with and are outcoupled by the outcoupling elements. In yet other embodiments, a different waveguide is provided for each range of wavelengths to be outputted. Incoupling optical elements selectively incouple light of the appropriate range of wavelengths into a corresponding waveguide, from which the light is outcoupled.
    Type: Application
    Filed: September 1, 2023
    Publication date: December 21, 2023
    Inventors: Robert Dale Tekolste, Michael Anthony Klug, Brian T. Schowengerdt
  • Publication number: 20230393401
    Abstract: A method of operating an eyepiece waveguide includes directing light from a projector to impinge on an incoupling grating (ICG). The method also includes diffracting a first fraction of the light from the projector into a first portion of the eyepiece waveguide, propagating the first fraction of the light into a second portion of the eyepiece waveguide, and diffracting the first fraction of the light out of the eyepiece waveguide. The method further includes diffracting a second fraction of the light from the projector into the second portion of the eyepiece waveguide, propagating the second fraction of the light into the first portion of the eyepiece waveguide, and diffracting the second fraction out of the eyepiece waveguide.
    Type: Application
    Filed: August 16, 2023
    Publication date: December 7, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, Brandon Michael-James Born, Samarth Bhargava, Victor Kai Liu
  • Patent number: 11835724
    Abstract: An augmented reality display system is configured to direct a plurality of parallactically-disparate intra-pupil images into a viewer's eye. The parallactically-disparate intra-pupil images provide different parallax views of a virtual object, and impinge on the pupil from different angles. In the aggregate, the wavefronts of light forming the images approximate a continuous divergent wavefront and provide selectable accommodation cues for the user, depending on the amount of parallax disparity between the intra-pupil images. The amount of parallax disparity is selected using a light source that outputs light for different images from different locations, with spatial differences in the locations of the light output providing differences in the paths that the light takes to the eye, which in turn provide different amounts of parallax disparity.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: December 5, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Robert Konrad, Gordon Wetzstein, Brian T. Schowengerdt, Michal Beau Dennison Vaughn
  • Patent number: 11838496
    Abstract: An eye tracking system includes a pair of glasses including two frames; a light scanning projector coupled to the pair of glasses and operable to scan a beam of light to project an image frame including a plurality of pixels; an eyepiece mounted in one of the two frames and optically coupled to the light scanning projector; one or more photodetectors coupled to one of the two frames and operable to detect time-varying reflected signals; and a processor coupled to the light scanning projector and the photodetectors. The eyepiece includes an exit pupil expander operable to direct a portion of the beam of light towards an eye of a user. Each of the time-varying reflected signals is associated with the plurality of pixels. The processor is operable to correlate the time-varying reflected signals with the plurality of pixels and determine a first eye orientation.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: December 5, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Brian T Schowengerdt, Mathew D. Watson, Samuel Scott Frank, Charles David Melville
  • Publication number: 20230384499
    Abstract: Architectures are provided for selectively incoupling one or more streams of light from a multiplexed light stream into a waveguide. The multiplexed light stream can have light with different characteristics (e.g., different wavelengths and/or different polarizations). The waveguide can comprise in-coupling elements that can selectively couple one or more streams of light from the multiplexed light stream into the waveguide while transmitting one or more other streams of light from the multiplexed light stream.
    Type: Application
    Filed: August 14, 2023
    Publication date: November 30, 2023
    Inventors: Michael Anthony Klug, Brian T. Schowengerdt, Michael Nevin Miller, Vikramjit Singh, Christophe Peroz, Pierre St. Hilaire, Jie Sun
  • Publication number: 20230367387
    Abstract: A waveguide apparatus includes a planar waveguide and at least one optical diffraction element (DOE) that provides a plurality of optical paths between an exterior and interior of the planar waveguide. A phase profile of the DOE may combine a linear diffraction grating with a circular lens, to shape a wave front and produce beams with desired focus. Waveguide apparati may be assembled to create multiple focal planes. The DOE may have a low diffraction efficiency, and planar waveguides may be transparent when viewed normally, allowing passage of light from an ambient environment (e.g., real world) useful in AR systems. Light may be returned for temporally sequentially passes through the planar waveguide. The DOE(s) may be fixed or may have dynamically adjustable characteristics. An optical coupler system may couple images to the waveguide apparatus from a projector, for instance a biaxially scanning cantilevered optical fiber tip.
    Type: Application
    Filed: May 22, 2023
    Publication date: November 16, 2023
    Applicant: MAGIC LEAP, INC.
    Inventors: Rony Abovitz, Brian T. Schowengerdt, Mathew D. Watson
  • Publication number: 20230359045
    Abstract: Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user’s body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 9, 2023
    Inventors: Nicole Elizabeth Samec, John Graham Macnamara, Christopher M. Harrises, Brian T. Schowengerdt, Rony Abovitz, Mark Baerenrodt
  • Patent number: 11796814
    Abstract: Architectures are provided for selectively outputting light for forming images, the light having different wavelengths and being outputted with low levels of crosstalk. In some embodiments, light is incoupled into a waveguide and deflected to propagate in different directions, depending on wavelength. The incoupled light then outcoupled by outcoupling optical elements that outcouple light based on the direction of propagation of the light. In some other embodiments, color filters are between a waveguide and outcoupling elements. The color filters limit the wavelengths of light that interact with and are outcoupled by the outcoupling elements. In yet other embodiments, a different waveguide is provided for each range of wavelengths to be outputted. Incoupling optical elements selectively incouple light of the appropriate range of wavelengths into a corresponding waveguide, from which the light is outcoupled.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: October 24, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Robert Dale TeKolste, Michael Anthony Klug, Brian T. Schowengerdt
  • Patent number: 11789189
    Abstract: Architectures are provided for selectively incoupling one or more streams of light from a multiplexed light stream into a waveguide. The multiplexed light stream can have light with different characteristics (e.g., different wavelengths and/or different polarizations). The waveguide can comprise in-coupling elements that can selectively couple one or more streams of light from the multiplexed light stream into the waveguide while transmitting one or more other streams of light from the multiplexed light stream.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: October 17, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Michael Anthony Klug, Brian T. Schowengerdt, Michael Nevin Miller, Vikramjit Singh, Christophe Peroz, Pierre St. Hilaire, Jie Sun
  • Publication number: 20230324706
    Abstract: A method for displaying virtual content to a user, the method includes determining an accommodation of the user's eyes. The method also includes delivering, through a first waveguide of a stack of waveguides, light rays having a first wavefront curvature based at least in part on the determined accommodation, wherein the first wavefront curvature corresponds to a focal distance of the determined accommodation. The method further includes delivering, through a second waveguide of the stack of waveguides, light rays having a second wavefront curvature, the second wavefront curvature associated with a predetermined margin of the focal distance of the determined accommodation.
    Type: Application
    Filed: June 6, 2023
    Publication date: October 12, 2023
    Applicant: MAGIC LEAP, INC.
    Inventor: Brian T. Schowengerdt
  • Publication number: 20230324590
    Abstract: Disclosed is an improved diffraction structure for 3D display systems. The improved diffraction structure includes an intermediate layer that resides between a waveguide substrate and a top grating surface. The top grating surface comprises a first material that corresponds to a first refractive index value, the underlayer comprises a second material that corresponds to a second refractive index value, and the substrate comprises a third material that corresponds to a third refractive index value. According to additional embodiments, improved approaches are provided to implement deposition of imprint materials onto a substrate, which allow for very precise distribution and deposition of different imprint patterns onto any number of substrate surfaces.
    Type: Application
    Filed: June 14, 2023
    Publication date: October 12, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Robert D. TEKOLSTE, Michael Anthony KLUG, Paul M. GRECO, Brian T. SCHOWENGERDT