Patents by Inventor Brian Theobald

Brian Theobald has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230193121
    Abstract: A quantum dot structure is provided, the quantum dot structure comprising: a nanocrystalline core from a first semiconductor material, a nanocrystalline shell from a second semiconductor material on the nanocrystalline core, at least one encapsulation layer on the nanocrystalline shell, wherein functional groups are present within the at least one encapsulation layer and/or on the surface of the at least one encapsulation layer facing away from the nanocrystalline shell, the functional groups being able to chemically react in a reversible manner. Further, a method for producing a quantum dot structure and a light emitting device are provided.
    Type: Application
    Filed: December 22, 2021
    Publication date: June 22, 2023
    Inventors: Peter Chen, Brian Theobald, Joseph Treadway
  • Patent number: 11676749
    Abstract: A wavelength converter material and a method of A method of preparing a wavelength converter material may include providing an optionally oxide coated phosphor material, mixing the optionally oxide coated phosphor material with an optionally oxide coated paramagnetic nanoparticle, coating the optionally oxide coated phosphor material and the optionally oxide coated paramagnetic nanoparticle with an oxide coating, thereby preparing a coated phosphor-nanoparticle particle, and separating the coated phosphor-nanoparticle particle, thereby preparing a wavelength converter material. The separating of the coated phosphor-nanoparticle particle may be manipulated by applying a magnetic field. Furthermore, a wavelength converter material, as well as a light emitting diode are described herein.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: June 13, 2023
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Robert Fitzmorris, Brian Theobald
  • Publication number: 20220406500
    Abstract: A wavelength converter material and a method of A method of preparing a wavelength converter material may include providing an optionally oxide coated phosphor material, mixing the optionally oxide coated phosphor material with an optionally oxide coated paramagnetic nanoparticle, coating the optionally oxide coated phosphor material and the optionally oxide coated paramagnetic nanoparticle with an oxide coating, thereby preparing a coated phosphor-nanoparticle particle, and separating the coated phosphor-nanoparticle particle, thereby preparing a wavelength converter material. The separating of the coated phosphor-nanoparticle particle may be manipulated by applying a magnetic field. Furthermore, a wavelength converter material, as well as a light emitting diode are described herein.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 22, 2022
    Inventors: Robert FITZMORRIS, Brian THEOBALD
  • Patent number: 11508880
    Abstract: A structure and a method for producing a structure are disclosed. In an embodiment a structure includes at least one semiconductor structure comprising at least one semiconductor nanocrystal and a high-density element for increasing a density of the structure, wherein a density of the high-density element is greater than a density of silica, and wherein the structure is configured to emit light.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: November 22, 2022
    Assignee: TDK ELECTRONICS AG
    Inventors: Joseph Treadway, Erik Johansson, Brian Theobald
  • Publication number: 20220181643
    Abstract: The present invention provides a process for preparing a catalyst precursor, said process comprising the steps of (i) providing PtaXb alloy particles on a support material and (ii) applying a shell of X to the PtaXb alloy particles to provide a catalyst precursor comprising particles having a PtaXb core and an X shell. The ratio of a to b is in the range of and including 10:1 to 1:2.5 and X is Co, Ni, Y, Gd, Sc or Cu. Also provided is a process for preparing a catalyst material.
    Type: Application
    Filed: March 20, 2020
    Publication date: June 9, 2022
    Inventors: Alejandro MARTINEZ-BONASTRE, Rachel O'MALLEY, Brian THEOBALD
  • Publication number: 20220085254
    Abstract: Semiconductor structures having a nanocrystalline core and corresponding nanocrystalline shell and insulator coating, wherein the semiconductor structure includes an anisotropic nanocrystalline core composed of a first semiconductor material, and an anisotropic nanocrystalline shell composed of a second, different, semiconductor material surrounding the anisotropic nanocrystalline core. The anisotropic nanocrystalline core and the anisotropic nanocrystalline shell form a quantum dot. An insulator layer encapsulates the nanocrystalline shell and anisotropic nanocrystalline core.
    Type: Application
    Filed: November 10, 2021
    Publication date: March 17, 2022
    Inventors: Juanita Kurtin, Brian Theobald, Matthew J. Carillo, Oun-Ho Park, Georgeta Masson, Steven M. Hughes
  • Patent number: 11205741
    Abstract: Semiconductor structures having a nanocrystalline core and corresponding nanocrystalline shell and insulator coating, wherein the semiconductor structure includes an anisotropic nanocrystalline core composed of a first semiconductor material, and an anisotropic nanocrystalline shell composed of a second, different, semiconductor material surrounding the anisotropic nanocrystalline core. The anisotropic nanocrystalline core and the anisotropic nanocrystalline shell form a quantum dot. An insulator layer encapsulates the nanocrystalline shell and anisotropic nanocrystalline core.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: December 21, 2021
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Juanita Kurtin, Brian Theobald, Matthew J. Carillo, Oun-Ho Park, Georgeta Masson, Steven M. Hughes
  • Publication number: 20210296542
    Abstract: A structure and a method for producing a structure are disclosed. In an embodiment a structure includes at least one semiconductor structure comprising at least one semiconductor nanocrystal and a high-density element for increasing a density of the structure, wherein a density of the high-density element is greater than a density of silica, and wherein the structure is configured to emit light.
    Type: Application
    Filed: March 18, 2020
    Publication date: September 23, 2021
    Inventors: Joseph Treadway, Erik Johansson, Brian Theobald
  • Patent number: 11053435
    Abstract: Quantum dot delivery methods are described. In a first example, a method of delivering or storing a plurality of nano-particles involves providing a plurality of nano-particles. The method also involves forming a dispersion of the plurality of nano-particles in a medium for delivery or storage, wherein the medium is free of organic solvent. In a second example, a method of delivering or storing a plurality of nano-particles involves providing a plurality of nano-particles in an organic solvent. The method also involves drying the plurality of nano-particles for delivery or storage, the drying removing entirely all of the organic solvent.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: July 6, 2021
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Georgeta Masson, Kari N. Haley, Brian Theobald, Benjamin Daniel Mangum, Juanita N. Kurtin
  • Publication number: 20200255733
    Abstract: A method for fabricating a connected network of oxide-coated semiconductor structure, comprising: preparing a first solution comprising a nanocrystalline material and a first solvent; preparing a second solution comprising a surfactant and a second solvent; adding the first solution and a bifunctional linker to the second solution, thereby preparing a third solution; adding a catalyst, water and a silicate to the third solution; thereby preparing a connected network of oxide-coated semiconductor structure; wherein the ratio of the water to surfactant is more than 3.5. Furthermore, an oxide-coated semiconductor structure and a light source comprising an oxide-coated semiconductor structure are described herein.
    Type: Application
    Filed: February 7, 2019
    Publication date: August 13, 2020
    Inventors: Weiwen Zhao, Juanita N. Kurtin, Joseph A. Treadway, Brian Theobald
  • Patent number: 10544313
    Abstract: A method of increasing photo-luminescent quantum yield (PLQY) of QDs to be used as down-converters placed directly on an LED chip includes synthesizing a plurality of quantum dots, applying energy to the plurality of quantum dots to increase PLQY of the plurality of quantum dots, dispensing the plurality of quantum dots onto the LED chip, and curing the LED chip.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: January 28, 2020
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Nathan Mclaughlin, Kari N. Haley, Morgan Vonnahme, Brian Theobald, Norbert Puetz
  • Publication number: 20190144743
    Abstract: Quantum dot delivery methods are described. In a first example, a method of delivering or storing a plurality of nano-particles involves providing a plurality of nano-particles. The method also involves forming a dispersion of the plurality of nano-particles in a medium for delivery or storage, wherein the medium is free of organic solvent. In a second example, a method of delivering or storing a plurality of nano-particles involves providing a plurality of nano-particles in an organic solvent. The method also involves drying the plurality of nano-particles for delivery or storage, the drying removing entirely all of the organic solvent.
    Type: Application
    Filed: December 21, 2018
    Publication date: May 16, 2019
    Inventors: Georgeta Masson, Kari N. Haley, Brian Theobald, Benjamin Daniel Mangum, Juanita N. Kurtin
  • Patent number: 10202543
    Abstract: Quantum dot delivery methods are described. In a first example, a method of delivering or storing a plurality of nano-particles involves providing a plurality of nano-particles. The method also involves forming a dispersion of the plurality of nano-particles in a medium for delivery or storage, wherein the medium is free of organic solvent. In a second example, a method of delivering or storing a plurality of nano-particles involves providing a plurality of nano-particles in an organic solvent. The method also involves drying the plurality of nano-particles for delivery or storage, the drying removing entirely all of the organic solvent.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: February 12, 2019
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Georgeta Masson, Kari N. Haley, Brian Theobald, Benjamin Daniel Mangum, Juanita N. Kurtin
  • Publication number: 20180342652
    Abstract: Semiconductor structures having a nanocrystalline core and corresponding nanocrystalline shell and insulator coating, wherein the semiconductor structure includes an anisotropic nanocrystalline core composed of a first semiconductor material, and an anisotropic nanocrystalline shell composed of a second, different, semiconductor material surrounding the anisotropic nanocrystalline core. The anisotropic nanocrystalline core and the anisotropic nanocrystalline shell form a quantum dot. An insulator layer encapsulates the nanocrystalline shell and anisotropic nanocrystalline core.
    Type: Application
    Filed: August 1, 2018
    Publication date: November 29, 2018
    Inventors: Juanita Kurtin, Brian Theobald, Matthew J. Carillo, Oun-Ho Park, Georgeta Masson, Steven M. Hughes
  • Patent number: 10074780
    Abstract: Semiconductor structures having a nanocrystalline core and corresponding nanocrystalline shell and insulator coating, wherein the semiconductor structure includes an anisotropic nanocrystalline core composed of a first semiconductor material, and an anisotropic nanocrystalline shell composed of a second, different, semiconductor material surrounding the anisotropic nanocrystalline core. The anisotropic nanocrystalline core and the anisotropic nanocrystalline shell form a quantum dot. An insulator layer encapsulates the nanocrystalline shell and anisotropic nanocrystalline core.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: September 11, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Juanita Kurtin, Brian Theobald, Matthew J. Carillo, Oun-Ho Park, Georgeta Masson, Steven M. Hughes
  • Patent number: 9831397
    Abstract: Fabricating a semiconductor structure including forming a nanocrystalline core from a first semiconductor material, forming a nanocrystalline shell from a second, different, semiconductor material that at least partially surrounds the nanocrystalline core, wherein the nanocrystalline core and the nanocrystalline shell form a quantum dot. Fabrication further involves forming an insulator layer encapsulating the quantum dot to create a coated quantum dot, and forming an additional insulator layer on the coated quantum dot using an Atomic Layer Deposition (ALD) process.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: November 28, 2017
    Assignee: Pacific Light Technologies Corp.
    Inventors: Brian Theobald, Matthew Bertram, Weiwen Zhao, Juanita N. Kurtin, Norbert Puetz
  • Patent number: 9793446
    Abstract: Composites having semiconductor structures embedded in a matrix are described. In an example, a composite includes a matrix material. A plurality of semiconductor structures is embedded in the matrix material. Each semiconductor structure includes an anisotropic nanocrystalline core composed of a first semiconductor material. Each semiconductor structure also includes a nanocrystalline shell composed of a second, different, semiconductor material at least partially surrounding the anisotropic nanocrystalline core. An insulator layer encapsulates each nanocrystalline shell and anisotropic nanocrystalline core pairing.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: October 17, 2017
    Assignee: Pacific Light Technologies Corp.
    Inventors: Juanita Kurtin, Brian Theobald, Matthew J. Carillo, Oun-Ho Park, Georgeta Masson, Steven M. Hughes
  • Publication number: 20170229619
    Abstract: A method of increasing photo-luminescent quantum yield (PLQY) of QDs to be used as down-converters placed directly on an LED chip includes synthesizing a plurality of quantum dots, applying energy to the plurality of quantum dots to increase PLQY of the plurality of quantum dots, dispensing the plurality of quantum dots onto the LED chip, and curing the LED chip.
    Type: Application
    Filed: February 6, 2017
    Publication date: August 10, 2017
    Inventors: Nathan Mclaughlin, Kari N. Haley, Morgan Vonnahme, Brian Theobald, Norbert Puetz
  • Publication number: 20160276527
    Abstract: Lighting apparatus including a light emitting diode and a plurality of semiconductor structures. Each semiconductor structure includes a quantum dot comprising a nanocrystalline core comprising a first semiconductor material and a nanocrystalline shell comprising a second, different, semiconductor material at least partially surrounding the nanocrystalline core, the quantum dot having a photoluminescence quantum yield (PLQY) of at least 90%. An insulator layer encapsulates the quantum dot.
    Type: Application
    Filed: May 28, 2013
    Publication date: September 22, 2016
    Inventors: Juanita N. KURTIN, Matthew J. CARILLO, Steven M. HUGHES, Brian THEOBALD, Colin C. REESE, Oun-Ho PARK, Georgeta MASSON
  • Publication number: 20160268483
    Abstract: Fabricating a semiconductor structure including forming a nanocrystalline core from a first semiconductor material, forming a nanocrystalline shell from a second, different, semiconductor material that at least partially surrounds the nanocrystalline core, wherein the nanocrystalline core and the nanocrystalline shell form a quantum dot. Fabrication further involves forming an insulator layer encapsulating the quantum dot to create a coated quantum dot, and forming an additional insulator layer on the coated quantum dot using an Atomic Layer Deposition (ALD) process.
    Type: Application
    Filed: March 8, 2016
    Publication date: September 15, 2016
    Inventors: Brian Theobald, Matthew Bertram, Weiwen Zhao, Juanita N. Kurtin, Norbert Puetz