Patents by Inventor Brian W. Bear

Brian W. Bear has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230371954
    Abstract: A surgical instrument includes a body, a shaft assembly, a stapling head assembly, an anvil, an anvil adjustment assembly, a trigger, and a lockout assembly. The stapling head assembly is operable to drive an annular array of staples. The anvil is configured to couple with the stapling head assembly. The anvil adjustment assembly includes a translating member, which translates relative to the body to thereby adjust the longitudinal position of the anvil relative to the stapling head assembly. The trigger is operable to actuate the stapling head assembly. The lockout assembly includes an electrically powered braking feature. A method of operating the surgical instrument includes providing the lockout assembly in a first state to permit translation of the translating member. The translating member is then translated. The lockout assembly is then transitioned to a second state to prevent further translation of the translating member.
    Type: Application
    Filed: July 28, 2023
    Publication date: November 23, 2023
    Inventors: Brian W. Bear, Matthew H. Bolton, Rodney V. Clingaman, Brian F. DiNardo, William D. Fox, Kevin L. Houser, John P. Measamer, Christopher C. Miller, Mark D. Overmyer, Kevin D. Sackett, Charles J. Scheib, Emily A. Schellin, Richard F. Schwemberger, Frederick E. Shelton, IV, Craig S. Smith, Omar J. Vakharia, Jason E. Zerkle
  • Publication number: 20230285026
    Abstract: An apparatus includes a body, a shaft, a stapling head assembly, and an anvil. The body includes a motor, a first user input feature, and a second user input feature. The first user input feature is operable to activate the motor. The shaft extends distally from the body. The stapling head assembly is positioned at a distal end of the shaft. The stapling head assembly includes an anvil coupling feature, at least one annular array of staples, and a staple driver. The second user input feature is operable to drive the anvil coupling feature longitudinally. The staple driver is operable to drive the at least one annular array of staples. The motor is operable to drive the staple driver. The anvil is configured to couple with the anvil coupling feature. The anvil is further configured to deform the staples driven by the staple driver.
    Type: Application
    Filed: January 27, 2023
    Publication date: September 14, 2023
    Inventors: Brian F. DiNardo, Brian W. Bear, Charles J. Scheib, Christopher C. Miller, Craig S. Smith, Emily A. Schellin, Frederick E. Shelton, Jason E. Zerkle, Jeffrey C. Gagel, John P. Measamer, Johnny H. Alexander, Joseph T. Kluener, Kevin D. Sackett, Kevin L. Houser, Mark D. Overmyer, Matthew H. Bolton, Omar J. Vakharia, Richard F. Schwemberger, Richard L. Leimbach, Rodney V. Clingaman, Timothy E. Goode, William D. Fox, William R. Stager
  • Publication number: 20220401102
    Abstract: An apparatus includes a body, a shaft, a stapling head assembly, and an anvil. The body includes a motor, a first user input feature, and a second user input feature. The first user input feature is operable to activate the motor. The shaft extends distally from the body. The stapling head assembly is positioned at a distal end of the shaft. The stapling head assembly includes an anvil coupling feature, at least one annular array of staples, and a staple driver. The second user input feature is operable to drive the anvil coupling feature longitudinally. The staple driver is operable to drive the at least one annular array of staples. The motor is operable to drive the staple driver. The anvil is configured to couple with the anvil coupling feature. The anvil is further configured to deform the staples driven by the staple driver.
    Type: Application
    Filed: May 27, 2022
    Publication date: December 22, 2022
    Inventors: Brian F. DiNardo, Brian W. Bear, Charles J. Scheib, Christopher C. Miller, Craig S. Smith, Emily A. Schellin, Frederick E. Shelton, IV, Jason E. Zerkle, Jeffrey C. Gagel, John P. Measamer, Johnny H. Alexander, III, Joseph T. Kluener, Kevin D. Sackett, Kevin L. Houser, Mark D. Overmyer, Matthew H. Bolton, Omar J. Vakharia, Richard F. Schwemberger, Richard L. Leimbach, Rodney V. Clingaman, Timothy E. Goode, William D. Fox, William R. Stager
  • Patent number: 11446036
    Abstract: An apparatus includes a body, a shaft, a stapling head assembly, and an anvil. The body includes a motor, a first user input feature, and a second user input feature. The first user input feature is operable to activate the motor. The shaft extends distally from the body. The stapling head assembly is positioned at a distal end of the shaft. The stapling head assembly includes an anvil coupling feature, at least one annular array of staples, and a staple driver. The second user input feature is operable to drive the anvil coupling feature longitudinally. The staple driver is operable to drive the at least one annular array of staples. The motor is operable to drive the staple driver. The anvil is configured to couple with the anvil coupling feature. The anvil is further configured to deform the staples driven by the staple driver.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: September 20, 2022
    Assignee: Cilag GmbH International
    Inventors: Brian F. DiNardo, Brian W. Bear, Charles J. Scheib, Christopher C. Miller, Craig S. Smith, Emily A. Schellin, Frederick E. Shelton, IV, Jason E. Zerkle, Jeffrey C. Gagel, John P. Measamer, Johnny H. Alexander, III, Joseph T. Kluener, Kevin D. Sackett, Kevin L. Houser, Mark D. Overmyer, Matthew H. Bolton, Omar J. Vakharia, Richard F. Schwemberger, Richard L. Leimbach, Rodney V. Clingaman, Timothy E. Goode, William D. Fox, William R. Stager
  • Publication number: 20200305881
    Abstract: An apparatus includes a body, a shaft, a stapling head assembly, and an anvil. The body includes a motor, a first user input feature, and a second user input feature. The first user input feature is operable to activate the motor. The shaft extends distally from the body. The stapling head assembly is positioned at a distal end of the shaft. The stapling head assembly includes an anvil coupling feature, at least one annular array of staples, and a staple driver. The second user input feature is operable to drive the anvil coupling feature longitudinally. The staple driver is operable to drive the at least one annular array of staples. The motor is operable to drive the staple driver. The anvil is configured to couple with the anvil coupling feature. The anvil is further configured to deform the staples driven by the staple driver.
    Type: Application
    Filed: March 31, 2020
    Publication date: October 1, 2020
    Inventors: Brian F. DiNardo, Brian W. Bear, Charles J. Scheib, Christopher C. Miller, Craig S. Smith, Emily A. Schellin, Frederick E. Shelton, IV, Jason E. Zerkle, Jeffrey C. Gagel, John P. Measamer, Johnny H. Alexander, III, Joseph T. Kluener, Kevin D. Sackett, Kevin L. Houser, Mark D. Overmyer, Matthew H. Bolton, Omar J. Vakharia, Richard F. Schwemberger, Richard L. Leimbach, Rodney V. Clingaman, Timothy E. Goode, William D. Fox, William R. Stager
  • Patent number: 10709452
    Abstract: An apparatus includes a body, a shaft, a stapling head assembly, and an anvil. The body includes a motor, a first user input feature, and a second user input feature. The first user input feature is operable to activate the motor. The shaft extends distally from the body. The stapling head assembly is positioned at a distal end of the shaft. The stapling head assembly includes an anvil coupling feature, at least one annular array of staples, and a staple driver. The second user input feature is operable to drive the anvil coupling feature longitudinally. The staple driver is operable to drive the at least one annular array of staples. The motor is operable to drive the staple driver. The anvil is configured to couple with the anvil coupling feature. The anvil is further configured to deform the staples driven by the staple driver.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: July 14, 2020
    Assignee: Ethicon LLC
    Inventors: Brian F. DiNardo, Brian W. Bear, Charles J. Scheib, Christopher C. Miller, Craig S. Smith, Emily A. Schellin, Frederick E. Shelton, IV, Jason E. Zerkle, Jeffrey C. Gagel, John P. Measamer, Johnny H. Alexander, III, Joseph T. Kluener, Kevin D. Sackett, Kevin L. Houser, Mark D. Overmyer, Matthew H. Bolton, Omar J. Vakharia, Richard F. Schwemberger, Richard L. Leimbach, Rodney V. Clingaman, Timothy E. Goode, William D. Fox, William R. Stager
  • Publication number: 20200085442
    Abstract: A surgical instrument includes a body, a shaft assembly, a stapling head assembly, an anvil, an anvil adjustment assembly, a trigger, and a lockout assembly. The stapling head assembly is operable to drive an annular array of staples. The anvil is configured to couple with the stapling head assembly. The anvil adjustment assembly includes a translating member, which translates relative to the body to thereby adjust the longitudinal position of the anvil relative to the stapling head assembly. The trigger is operable to actuate the stapling head assembly. The lockout assembly includes an electrically powered braking feature. A method of operating the surgical instrument includes providing the lockout assembly in a first state to permit translation of the translating member. The translating member is then translated. The lockout assembly is then transitioned to a second state to prevent further translation of the translating member.
    Type: Application
    Filed: September 27, 2019
    Publication date: March 19, 2020
    Inventors: Brian W. Bear, Matthew H. Bolton, Rodney V. Clingaman, Brian F. DiNardo, William D. Fox, Kevin L. Houser, John P. Measamer, Christopher C. Miller, Mark D. Overmyer, Kevin D. Sackett, Charles J. Scheib, Emily A. Schellin, Richard F. Schwemberger, Frederick E. Shelton, IV, Craig S. Smith, Omar J. Vakharia, Jason E. Zerkle
  • Patent number: 10478189
    Abstract: A surgical instrument includes a body, a shaft assembly, a stapling head assembly, an anvil, an anvil adjustment assembly, a trigger, and a lockout assembly. The stapling head assembly is operable to drive an annular array of staples. The anvil is configured to couple with the stapling head assembly. The anvil adjustment assembly includes a translating member, which translates relative to the body to thereby adjust the longitudinal position of the anvil relative to the stapling head assembly. The trigger is operable to actuate the stapling head assembly. The lockout assembly includes an electrically powered braking feature. A method of operating the surgical instrument includes providing the lockout assembly in a first state to permit translation of the translating member. The translating member is then translated. The lockout assembly is then transitioned to a second state to prevent further translation of the translating member.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: November 19, 2019
    Assignee: Ethicon LLC
    Inventors: Brian W. Bear, Matthew H. Bolton, Rodney V. Clingaman, Brian F. DiNardo, William D. Fox, Kevin L. Houser, John P. Measamer, Christopher C. Miller, Mark D. Overmyer, Kevin D. Sackett, Charles J. Scheib, Emily A. Schellin, Richard F. Schwemberger, Frederick E. Shelton, IV, Craig S. Smith, Omar J. Vakharia, Jason E. Zerkle
  • Patent number: 10265066
    Abstract: A surgical instrument includes a stapling head assembly, an anvil, a firing assembly, a load sensor, and an indicator. The firing assembly actuates the stapling head assembly to drive an annular array of staples through tissue toward the anvil. The load sensor is operable to sense a load in the firing assembly while the firing assembly actuates the stapling head assembly. The indicator is operable to provide feedback based on the load sensed by the load sensor. The firing assembly may include a longitudinally translatable member. The instrument may further include a position sensor that is operable to sense a longitudinal position of the translatable member while the firing assembly actuates the stapling head assembly. The indicator may be activated based on data from at least one of the sensors indicating completion or failure of a full actuation stroke of the firing assembly.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: April 23, 2019
    Assignee: Ethicon LLC
    Inventors: John P. Measamer, Charles J. Scheib, Emily A. Schellin, Brian W. Bear, Brian F. DiNardo, Christopher C. Miller, Frederick E. Shelton, IV
  • Publication number: 20170258471
    Abstract: An apparatus includes a body, a shaft, a stapling head assembly, and an anvil. The body includes a motor, a first user input feature, and a second user input feature. The first user input feature is operable to activate the motor. The shaft extends distally from the body. The stapling head assembly is positioned at a distal end of the shaft. The stapling head assembly includes an anvil coupling feature, at least one annular array of staples, and a staple driver. The second user input feature is operable to drive the anvil coupling feature longitudinally. The staple driver is operable to drive the at least one annular array of staples. The motor is operable to drive the staple driver. The anvil is configured to couple with the anvil coupling feature. The anvil is further configured to deform the staples driven by the staple driver.
    Type: Application
    Filed: May 25, 2017
    Publication date: September 14, 2017
    Inventors: Brian F. DiNardo, Brian W. Bear, Charles J. Scheib, Christopher C. Miller, Craig S. Smith, Emily A. Schellin, Frederick E. Shelton, IV, Jason E. Zerkle, Jeffrey C. Gagel, John P. Measamer, Johnny H. Alexander, III, Joseph T. Kluener, Kevin D. Sackett, Kevin L. Houser, Mark D. Overmyer, Matthew H. Bolton, Omar J. Vakharia, Richard F. Schwemberger, Richard L. Leimbach, Rodney V. Clingaman, Timothy E. Goode, William D. Fox, William R. Stager
  • Publication number: 20160374668
    Abstract: A surgical instrument includes a stapling head assembly, an anvil, a firing assembly, a load sensor, and an indicator. The firing assembly actuates the stapling head assembly to drive an annular array of staples through tissue toward the anvil. The load sensor is operable to sense a load in the firing assembly while the firing assembly actuates the stapling head assembly. The indicator is operable to provide feedback based on the load sensed by the load sensor. The firing assembly may include a longitudinally translatable member. The instrument may further include a position sensor that is operable to sense a longitudinal position of the translatable member while the firing assembly actuates the stapling head assembly. The indicator may be activated based on data from at least one of the sensors indicating completion or failure of a full actuation stroke of the firing assembly.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: John P. Measamer, Charles J. Scheib, Emily A. Schellin, Brian W. Bear, Brian F. DiNardo, Christopher C. Miller, Frederick E. Shelton, IV
  • Publication number: 20160374672
    Abstract: A surgical instrument includes a body, a shaft assembly, a stapling head assembly, an anvil, an anvil adjustment assembly, a trigger, and a lockout assembly. The stapling head assembly is operable to drive an annular array of staples. The anvil is configured to couple with the stapling head assembly. The anvil adjustment assembly includes a translating member, which translates relative to the body to thereby adjust the longitudinal position of the anvil relative to the stapling head assembly. The trigger is operable to actuate the stapling head assembly. The lockout assembly includes an electrically powered braking feature. A method of operating the surgical instrument includes providing the lockout assembly in a first state to permit translation of the translating member. The translating member is then translated. The lockout assembly is then transitioned to a second state to prevent further translation of the translating member.
    Type: Application
    Filed: June 26, 2015
    Publication date: December 29, 2016
    Inventors: Brian W. Bear, Matthew H. Bolton, Rodney V. Clingaman, Brian F. DiNardo, William D. Fox, Kevin L. Houser, John P. Measamer, Christopher C. Miller, Mark D. Overmyer, Kevin D. Sackett, Charles J. Scheib, Emily A. Schellin, Richard F. Schwemberger, Frederick E. Shelton, IV, Craig S. Smith, Omar J. Vakharia, Jason E. Zerkle
  • Patent number: 9492170
    Abstract: A modular end effector delivers a therapeutic agent onto tissue that has been severed and/or stapled. The end effector is removably attached to a device. The device applies force to a piston of the end effector. The force causes a distal movement of a piston along a wall disposed within the end effector. The piston engages with agents stored on opposite sides of the wall, moving the agents distally to a mixture space. The agents are mixed in the mixture space and expelled through a tip. Staples may be embedded in or disposed below a foam block, which is disposed within a staple cartridge. Via an endoscopic stapling device, coated staples are driven through tissue while interacting with another agent on the device or the cartridge. The interaction forms a tissue restoring material that is applied onto the tissue.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: November 15, 2016
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Brian W. Bear, Thu Anh Le, Thomas W. Lytle, IV, Mark D. Overmyer, Michael Setser, Bret W. Smith, Joseph Zavatsky, Kreena Modi
  • Publication number: 20130075447
    Abstract: A surgical instrument includes a handle portion, a shaft housing a firing bar, an end effector comprising an anvil, a lower jaw, and a stapling and severing assembly responsive to a longitudinal closing motion produced by the handle portion and the shaft. The lower jaw is configured to receive a removable cartridge. The cartridge includes a housing, a plurality of staples disposed in the housing, and a deck disposed over the plurality of staples. The deck defines apertures, with each aperture being substantially disposed over each staple. The cartridge further receives a buttress material stored in one or both of the anvil or cartridge. The material is releasable onto severed tissue via a firing bar severing the buttress material in response to the longitudinal closing motion.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 28, 2013
    Inventors: William B. Weisenburgh, II, Craig S. Smith, Gregory B. Blair, Zhifan F. Huang, Douglas B. Hoffman, Kristi S. Geier, Bret W. Smith, Thomas W. Lytle, IV, Mark D. Overmyer, Brian W. Bear, Michael E. Setser, Thu Anh Le, James A. Woodard, JR., Kreena R. Modi, Joseph Zavatsky
  • Publication number: 20130041406
    Abstract: A medical fastener has a first, pre-deployment shape for loading into a surgical instrument, and a second, post-deployment shape for connecting tissue together, and includes a crown and a pair of legs, each leg substantially transversely extending from a respective end of the crown in the first, pre-deployment shape. A coating, such as a hemostatic agent, is applied to a fastener interior surface defined by interior surfaces of the crown and the pair of legs.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 14, 2013
    Inventors: Brian W. Bear, Thu Anh Le, Mark D. Overmyer, Michael Setser, James A. Woodard, JR.
  • Publication number: 20130037596
    Abstract: A modular end effector delivers a therapeutic agent onto tissue that has been severed and/or stapled. The end effector is removably attached to a device. The device applies force to a piston of the end effector. The force causes a distal movement of a piston along a wall disposed within the end effector. The piston engages with agents stored on opposite sides of the wall, moving the agents distally to a mixture space. The agents are mixed in the mixture space and expelled through a tip. Staples may be embedded in or disposed below a foam block, which is disposed within a staple cartridge. Via an endoscopic stapling device, coated staples are driven through tissue while interacting with another agent on the device or the cartridge. The interaction forms a tissue restoring material that is applied onto the tissue.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 14, 2013
    Inventors: Brian W. Bear, Thu Anh Le, Thomas W. Lytle, IV, Mark D. Overmyer, Michael Setser, Bret W. Smith, Joseph Zavatsky, Kreena Modi