Patents by Inventor Brian W. Pogue

Brian W. Pogue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11937951
    Abstract: A method of generating corrected fluorescence data of concentrations of a targeted fluorophore in tissue of a subject includes administering first and second fluorescent contrast agents to the subject, the first contrast agent targeted to tissue of interest, the second agent untargeted. The tissue is illuminated with light of a first stimulus wavelength and first data is acquired at an appropriate emissions wavelength; the tissue is illuminated at a second stimulus wavelength and second data is acquired at a second emissions wavelength associated with the second agent, the first and second emissions wavelength differ. Difference data is generated by subtracting the second data from the first data. A system provides for stimulus and capture at multiple wavelengths, with image storage memory and subtraction code, to perform the method. Corrected data may form an fluorescence image, or is used to generate fluorescence tomographic images.
    Type: Grant
    Filed: January 25, 2023
    Date of Patent: March 26, 2024
    Assignee: The Trustees of Dartmouth College
    Inventors: Kenneth Tichauer, Robert W. Holt, Frederic Leblond, Pablo Valdes, Brian W. Pogue, Keith D. Paulsen, David W. Roberts
  • Patent number: 11813482
    Abstract: The present invention relates to advanced Cherenkov-based imaging systems, tools, and methods of feedback control, temporal control sequence image capture, and quantification in high resolution dose images. In particular, the present invention provides a system and method for simple, accurate, quick, robust, real-time, water-equivalent characterization of beams from LINACs and other systems producing external-therapy radiation for purposes including optimization, commissioning, routine quality auditing, R&D, and manufacture. The present invention also provides a system and method for rapid and economic characterization of complex radiation treatment plans prior to patient exposure. Further, the present invention also provides a system and method of economically detecting Cherenkov radiation emitted by tissue and other media in real-world clinical settings (e.g., settings illuminated by visible light).
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: November 14, 2023
    Assignee: DoseOptics LLC
    Inventors: Venkataramanan Krishnaswamy, Brian W. Pogue
  • Publication number: 20230233157
    Abstract: A method of generating corrected fluorescence data of concentrations of a targeted fluorophore in tissue of a subject includes administering first and second fluorescent contrast agents to the subject, the first contrast agent targeted to tissue of interest, the second agent untargeted. The tissue is illuminated with light of a first stimulus wavelength and first data is acquired at an appropriate emissions wavelength; the tissue is illuminated at a second stimulus wavelength and second data is acquired at a second emissions wavelength associated with the second agent, the first and second emissions wavelength differ. Difference data is generated by subtracting the second data from the first data. A system provides for stimulus and capture at multiple wavelengths, with image storage memory and subtraction code, to perform the method. Corrected data may form an fluorescence image, or is used to generate fluorescence tomographic images.
    Type: Application
    Filed: January 25, 2023
    Publication date: July 27, 2023
    Inventors: Kenneth Tichauer, Robert W. Holt, Frederic Leblond, Pablo Valdes, Brian W. Pogue, Keith D. Paulsen, David W. Roberts
  • Patent number: 11633627
    Abstract: A Cherenkov-based or thin-sheet scintillator-based imaging system uses a radio-optical triggering unit (RTU) that detects scattered radiation in a fast-response scintillator to detect pulses of radiation to permit capture of Cherenkov-light or scintillator-light images during pulses of radiation and background images at times when pulses of radiation are not present without need for electrical interface to the accelerator that provides the pulses of radiation. The Cherenkov images are corrected by background subtraction and used for purposes including optimization of treatment, commissioning, routine quality auditing, R&D, and manufacture. The radio-optical triggering unit employs high-speed, highly sensitive radio-optical sensing to generate a digital timing signal which is synchronous with the treatment beam for use in triggering Cherenkov light or scintillator light imaging.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: April 25, 2023
    Assignees: THE TRUSTEES OF DARTMOUTH COLLEGE, DOSEOPTICS, LLC
    Inventors: Venkataramanan Krishnaswamy, Petr Bruza, Jr., Michael Jermyn, Brian W. Pogue, David Gladstone, Lesley A. Jarvis, Irwin Tendler
  • Patent number: 11565128
    Abstract: In an embodiment, the present disclosure pertains to a method of determining optimal parameters for application of light from a light source to a tissue. In general, the method includes one or more of the following steps of: (1) utilizing an algorithm to generate results related to estimating light flow from the light source into the tissue; and (2) utilizing the results to determine optimal parameters for applying the light source to the tissue. In some embodiments, the method of the present disclosure further includes the step of: (3) applying the light source to the tissue using the optimal parameters; and (4) treating a condition associated with the tissue.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: January 31, 2023
    Assignee: Trustees of Dartmouth College
    Inventors: Ethan Phillip M. Larochelle, Brian W. Pogue
  • Patent number: 11564639
    Abstract: A method of generating corrected fluorescence data of concentrations of a targeted fluorophore in tissue of a subject includes administering first and second fluorescent contrast agents to the subject, the first contrast agent targeted to tissue of interest, the second agent untargeted. The tissue is illuminated with light of a first stimulus wavelength and first data is acquired at an appropriate emissions wavelength; the tissue is illuminated at a second stimulus wavelength and second data is acquired at a second emissions wavelength associated with the second agent, the first and second emissions wavelength differ. Difference data is generated by subtracting the second data from the first data. A system provides for stimulus and capture at multiple wavelengths, with image storage memory and subtraction code, to perform the method. Corrected data may form an fluorescence image, or is used to generate fluorescence tomographic images.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: January 31, 2023
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Kenneth Tichauer, Robert W. Holt, Frederic Leblond, Pablo Valdes, Brian W. Pogue, Keith D. Paulsen, David W. Roberts
  • Publication number: 20220143427
    Abstract: The present invention relates to advanced Cherenkov-based imaging systems, tools, and methods of feedback control, temporal control sequence image capture, and quantification in high resolution dose images. In particular, the present invention provides a system and method for simple, accurate, quick, robust, real-time, water-equivalent characterization of beams from LINACs and other systems producing external-therapy radiation for purposes including optimization, commissioning, routine quality auditing, R&D, and manufacture. The present invention also provides a system and method for rapid and economic characterization of complex radiation treatment plans prior to patient exposure. Further, the present invention also provides a system and method of economically detecting Cherenkov radiation emitted by tissue and other media in real-world clinical settings (e.g., settings illuminated by visible light).
    Type: Application
    Filed: January 24, 2022
    Publication date: May 12, 2022
    Inventors: Venkataramanan Krishnaswamy, Brian W. Pogue
  • Patent number: 11235177
    Abstract: The present invention relates to advanced Cherenkov-based imaging systems, tools, and methods of feedback control, temporal control sequence image capture, and quantification in high resolution dose images. In particular, the present invention provides a system and method for simple, accurate, quick, robust, real-time, water-equivalent characterization of beams from LINACs and other systems producing external-therapy radiation for purposes including optimization, commissioning, routine quality auditing, R&D, and manufacture. The present invention also provides a system and method for rapid and economic characterization of complex radiation treatment plans prior to patient exposure. Further, the present invention also provides a system and method of economically detecting Cherenkov radiation emitted by tissue and other media in real-world clinical settings (e.g., settings illuminated by visible light).
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: February 1, 2022
    Assignee: DoseOptics LLC
    Inventors: Venkataramanan Krishnaswamy, Brian W. Pogue
  • Publication number: 20210275833
    Abstract: A Cherenkov-based or thin-sheet scintillator-based imaging system uses a radio-optical triggering unit (RTU) that detects scattered radiation in a fast-response scintillator to detect pulses of radiation to permit capture of Cherenkov-light or scintillator-light images during pulses of radiation and background images at times when pulses of radiation are not present without need for electrical interface to the accelerator that provides the pulses of radiation. The Cherenkov images are corrected by background subtraction and used for purposes including optimization of treatment, commissioning, routine quality auditing, R&D, and manufacture. The radio-optical triggering unit employs high-speed, highly sensitive radio-optical sensing to generate a digital timing signal which is synchronous with the treatment beam for use in triggering Cherenkov light or scintillator light imaging.
    Type: Application
    Filed: May 6, 2021
    Publication date: September 9, 2021
    Inventors: Venkataramanan Krishnaswamy, Petr Bruza, JR., Michael Jermyn, Brian W. Pogue, David Gladstone, Lesley A. Jarvis, Irwin Tendler
  • Patent number: 11000703
    Abstract: A Cherenkov-based imaging system uses a radio-optical triggering unit (RTU) that detects scattered radiation in a fast-response scintillator to detect pulses of radiation to permit capture of Cherenkov-light images during pulses of radiation and background images at times when pulses of radiation are not present without need for electrical interface to the accelerator that provides the pulses of radiation. The Cherenkov images are corrected by background subtraction and used for purposes including optimization of treatment, commissioning, routine quality auditing, R&D, and manufacture. The radio-optical triggering unit employs high-speed, highly sensitive radio-optical sensing to generate a digital timing signal which is synchronous with the treatment beam for use in triggering Cherenkov radiation detection.
    Type: Grant
    Filed: July 18, 2020
    Date of Patent: May 11, 2021
    Assignees: THE TRUSTEES OF DARTMOUTH COLLEGE, DOSEOPTICS, LLC
    Inventors: Venkataramanan Krishnaswamy, Petr Bruza, Michael Jermyn, Brian W. Pogue
  • Publication number: 20210001149
    Abstract: In an embodiment, the present disclosure pertains to a method of determining optimal parameters for application of light from a light source to a tissue. In general, the method includes one or more of the following steps of: (1) utilizing an algorithm to generate results related to estimating light flow from the light source into the tissue; and (2) utilizing the results to determine optimal parameters for applying the light source to the tissue. In some embodiments, the method of the present disclosure further includes the step of: (3) applying the light source to the tissue using the optimal parameters; and (4) treating a condition associated with the tissue.
    Type: Application
    Filed: June 30, 2020
    Publication date: January 7, 2021
    Inventors: Ethan Phillip M. LaRochelle, Brian W. Pogue
  • Publication number: 20210001153
    Abstract: A system for dosimetry includes a radiation source that provides a pulsed radiation beam to a treatment zone, and a thin sheet of scintillator disposed between the radiation source and skin of a subject in the treatment zone. A gated camera images the scintillator integrating light from the scintillator during multiple pulses of the radiation beam while excluding light received between pulses of the pulsed radiation beam; and an image capture and processing machine that receives images from the gated camera and performs additional corrections to provide a map of dose received by the subject.
    Type: Application
    Filed: February 22, 2019
    Publication date: January 7, 2021
    Inventors: Brian W. Pogue, Petr Bruza, David Gladstone, Lesley A. Jarvis, Irwin Tendler
  • Publication number: 20200346041
    Abstract: A Cherenkov-based imaging system uses a radio-optical triggering unit (RTU) that detects scattered radiation in a fast-response scintillator to detect pulses of radiation to permit capture of Cherenkov-light images during pulses of radiation and background images at times when pulses of radiation are not present without need for electrical interface to the accelerator that provides the pulses of radiation. The Cherenkov images are corrected by background subtraction and used for purposes including optimization of treatment, commissioning, routine quality auditing, R&D, and manufacture. The radio-optical triggering unit employs high-speed, highly sensitive radio-optical sensing to generate a digital timing signal which is synchronous with the treatment beam for use in triggering Cherenkov radiation detection.
    Type: Application
    Filed: July 18, 2020
    Publication date: November 5, 2020
    Inventors: Venkataramanan Krishnaswamy, Petr Bruza, Michael Jermyn, Brian W. Pogue
  • Publication number: 20200061391
    Abstract: The present invention relates to advanced Cherenkov-based imaging systems, tools, and methods of feedback control, temporal control sequence image capture, and quantification in high resolution dose images. In particular, the present invention provides a system and method for simple, accurate, quick, robust, real-time, water-equivalent characterization of beams from LINACs and other systems producing external-therapy radiation for purposes including optimization, commissioning, routine quality auditing, R&D, and manufacture. The present invention also provides a system and method for rapid and economic characterization of complex radiation treatment plans prior to patient exposure. Further, the present invention also provides a system and method of economically detecting Cherenkov radiation emitted by tissue and other media in real-world clinical settings (e.g., settings illuminated by visible light).
    Type: Application
    Filed: October 23, 2017
    Publication date: February 27, 2020
    Inventors: Venkataramanan Krishnaswamy, Brian W. Pogue
  • Patent number: 10485425
    Abstract: A structured-light imaging system includes a structured light projector for illuminating a surface and an electronic camera configured to image the surface. An image processor receives the images and has structured light scatteroscopy (SLS) firmware with machine readable instructions that illuminate the surface with structured light having a spatial frequency of at least 0.5 mm?1, and process the images to determine a map of scattering parameters at the surface independent of absorption properties. In an embodiment, the system also has cameras configured to obtain a stereo pair of images of the surface, the image processor having 3D firmware for extracting a three dimensional model of the surface from the stereo pair of images and compensating the map for non-flat surfaces.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: November 26, 2019
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Venkataramanan Krishnaswamy, Brian W. Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III
  • Publication number: 20170164836
    Abstract: A structured-light imaging system includes a structured light projector for illuminating a surface and an electronic camera configured to image the surface. An image processor receives the images and has structured light scatteroscopy (SLS) firmware with machine readable instructions that illuminate the surface with structured light having a spatial frequency of at least 0.5 mm?1, and process the images to determine a map of scattering parameters at the surface independent of absorption properties. In an embodiment, the system also has cameras configured to obtain a stereo pair of images of the surface, the image processor having 3D firmware for extracting a three dimensional model of the surface from the stereo pair of images and compensating the map for non-flat surfaces.
    Type: Application
    Filed: February 4, 2015
    Publication date: June 15, 2017
    Inventors: Venkataramanan Krishnaswamy, Brian W. Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III
  • Publication number: 20170085855
    Abstract: A surgical guidance system has two cameras to provide stereo image stream of a surgical field; and a stereo viewer. The system has a 3D surface extraction module that generates a first 3D model of the surgical field from the stereo image streams; a registration module for co-registering annotating data with the first 3D model; and a stereo image enhancer for graphically overlaying at least part of the annotating data onto the stereo image stream to form an enhanced stereo image stream for display, where the enhanced stereo stream enhances a surgeon's perception of the surgical field. The registration module has an alignment refiner to adjust registration of the annotating data with the 3D model based upon matching of features within the 3D model and features within the annotating data; and in an embodiment, a deformation modeler to deform the annotating data based upon a determined tissue deformation.
    Type: Application
    Filed: December 2, 2016
    Publication date: March 23, 2017
    Inventors: David W. ROBERTS, Keith D. PAULSEN, Alexander HARTOV, Songbai JI, Frederic LEBLOND, Brian W. POGUE, Scott C. DAVIS, Dax KEPSHIRE
  • Publication number: 20150374308
    Abstract: A method of generating corrected fluorescence data of concentrations of a targeted fluorophore in tissue of a subject includes administering first and second fluorescent contrast agents to the subject, the first contrast agent targeted to tissue of interest, the second agent untargeted. The tissue is illuminated with light of a first stimulus wavelength and first data is acquired at an appropriate emissions wavelength; the tissue is illuminated at a second stimulus wavelength and second data is acquired at a second emissions wavelength associated with the second agent, the first and second emissions wavelength differ. Difference data is generated by subtracting the second data from the first data. A system provides for stimulus and capture at multiple wavelengths, with image storage memory and subtraction code, to perform the method. Corrected data may form an fluorescence image, or is used to generate fluorescence tomographic images.
    Type: Application
    Filed: February 13, 2014
    Publication date: December 31, 2015
    Applicant: The Trustees of Dartmouth College
    Inventors: Kenneth Tichauer, Robert W. Holt, Frederic Leblond, Pablo Valdes, Brian W. Pogue, Keith D. Paulsen, David W. Roberts
  • Patent number: 8948851
    Abstract: A tomographic fluorescent imaging device for imaging fluorophores in biological tissues has a scanned laser for scanning the tissue and a camera for receiving light from the biological tissue at an angle to the beam at a second wavelength ten or more nanometers greater in wavelength than the wavelength of the laser. Use of both intrinsic and extrinsic fluorophores is described. Images are obtained at each of several positions of the beam. An image processing system receives the series of images, models a path of the beam through the tissue, and determines depth of fluorophore in tissue from intersections of the modeled path of the beam and the path of the received light. The laser is of 600 nm or longer wavelength, to provide penetration of tissue. The imaging device is used during surgery to visualize lesions of various types to ensure complete removal of malignant tumors.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: February 3, 2015
    Assignee: The Trustees of Dartmouth College
    Inventors: Frederic Leblond, David W. Roberts, Brian W. Pogue, Keith D. Paulsen, Alex Hartov, Scott C. Davis, Dax Kepshire
  • Publication number: 20110275932
    Abstract: A tomographic fluorescent imaging device for imaging fluorophores in biological tissues has a scanned laser for scanning the tissue and a camera for receiving light from the biological tissue at an angle to the beam at a second wavelength ten or more nanometers greater in wavelength than the wavelength of the laser. Use of both intrinsic and extrinsic fluorophores is described. Images are obtained at each of several positions of the beam. An image processing system receives the series of images, models a path of the beam through the tissue, and determines depth of fluorophore in tissue from intersections of the modeled path of the beam and the path of the received light. The laser is of 600 nm or longer wavelength, to provide penetration of tissue. The imaging device is used during surgery to visualize lesions of various types to ensure complete removal of malignant tumors.
    Type: Application
    Filed: December 4, 2009
    Publication date: November 10, 2011
    Inventors: Frederic Leblond, David W. Roberts, Brian W. Pogue, Keith D. Paulsen, Alex Hartov, Scott C. Davis, Dax Kepshire