Patents by Inventor Brian William Pogue

Brian William Pogue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240081759
    Abstract: An apparatus and method for medical imaging uses a first and second contrast agent, the second agent targeted to a particular tissue type. First images are obtained using the first agent, and second images using the second agent using medical imaging systems. An image processing system is adapted to process the first and second medical images by fitting parameters of a pharmacokinetic model to the first medical images, identifying a nontargeted tissue type, scaling the fitted parameters to best match the nontargeted tissue in the second medical images, executing the pharmacokinetic model to prepare a correction image, and generating corrected medical images by subtracting the correction image from the second medical images.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 14, 2024
    Inventors: Kenneth M. TICHAUER, Scott C. DAVIS, Brian William POGUE
  • Publication number: 20230363647
    Abstract: A method for determining sub-diffuse scattering parameters of a material includes illuminating the material with structured light and imaging remission by the material of the structured light. The method further includes determining, from captured remission images, sub-diffuse scattering parameters of the material. A structured-light imaging system for determining sub-diffuse scattering parameters of a material includes a structured-light illuminator, for illuminating the material with structured light of periodic spatial structure, and a camera for capturing images of the remission of the structured light by the material. The structured-light imaging system further includes an analysis module for processing the images to quantitatively determine the sub-diffuse scattering parameters. A software product includes machine-readable instructions for analyzing images of remission of structured light by a material to determine sub-diffuse scattering parameters of the material.
    Type: Application
    Filed: July 18, 2023
    Publication date: November 16, 2023
    Inventors: Stephen Chad Kanick, Brian William Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III, Venkataramanan Krishnaswamy
  • Patent number: 11813100
    Abstract: An apparatus and method for medical imaging uses a first and second contrast agent, the second agent targeted to a particular tissue type. First images are obtained using the first agent, and second images using the second agent using medical imaging systems. An image processing system is adapted to process the first and second medical images by fitting parameters of a pharmacokinetic model to the first medical images, identifying a nontargeted tissue type, scaling the fitted parameters to best match the nontargeted tissue in the second medical images, executing the pharmacokinetic model to prepare a correction image, and generating corrected medical images by subtracting the correction image from the second medical images.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: November 14, 2023
    Assignee: The Trustees of Dartmouth College
    Inventors: Kenneth M. Tichauer, Scott C. Davis, Brian William Pogue
  • Patent number: 11751767
    Abstract: A method for determining sub-diffuse scattering parameters of a material includes illuminating the material with structured light and imaging remission by the material of the structured light. The method further includes determining, from captured remission images, sub-diffuse scattering parameters of the material. A structured-light imaging system for determining sub-diffuse scattering parameters of a material includes a structured-light illuminator, for illuminating the material with structured light of periodic spatial structure, and a camera for capturing images of the remission of the structured light by the material. The structured-light imaging system further includes an analysis module for processing the images to quantitatively determine the sub-diffuse scattering parameters. A software product includes machine-readable instructions for analyzing images of remission of structured light by a material to determine sub-diffuse scattering parameters of the material.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: September 12, 2023
    Assignee: The Trustees of Dartmouth College
    Inventors: Stephen Chad Kanick, Brian William Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III, Venkataramanan Krishnaswamy
  • Publication number: 20230020195
    Abstract: A method for determining sub-diffuse scattering parameters of a material includes illuminating the material with structured light and imaging remission by the material of the structured light. The method further includes determining, from captured remission images, sub-diffuse scattering parameters of the material. A structured-light imaging system for determining sub-diffuse scattering parameters of a material includes a structured-light illuminator, for illuminating the material with structured light of periodic spatial structure, and a camera for capturing images of the remission of the structured light by the material. The structured-light imaging system further includes an analysis module for processing the images to quantitatively determine the sub-diffuse scattering parameters. A software product includes machine-readable instructions for analyzing images of remission of structured light by a material to determine sub-diffuse scattering parameters of the material.
    Type: Application
    Filed: September 20, 2022
    Publication date: January 19, 2023
    Inventors: Stephen Chad Kanick, Brian William Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III, Venkataramanan Krishnaswamy
  • Patent number: 10940332
    Abstract: A monitor for pulsed high energy radiation therapy using a radiation beam passing through a treatment zone, the radiation of 0.2 MEV or greater; has a camera for imaging Cherenkov light from the treatment zone; apparatus for preventing interference by room lighting, the camera synchronized to pulses of the radiation beam; and an image processor adapted to determine extent of the beam area on the patient skin from the images. Additionally an image processor determines cumulative skin dose in the treatment zone from the images. In embodiments, the processor uses a three-dimensional model of a subject to determine mapping of image intensity in images of Cherenkov light to radiation intensity in skin, applies the mapping to images of Cherenkov light to verify skin dose delivered, and accumulates skin dose by summing the maps of skin dose.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: March 9, 2021
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Rongxiao Zhang, Brian William Pogue, Adam K. Glaser, David J. Gladstone, Lesley A. Jarvis, Jacqueline M. Andreozzi, Shudong Jiang, Scott Christian Davis, Johan Jakob Axelsson
  • Publication number: 20200069187
    Abstract: A method for determining sub-diffuse scattering parameters of a material includes illuminating the material with structured light and imaging remission by the material of the structured light. The method further includes determining, from captured remission images, sub-diffuse scattering parameters of the material. A structured-light imaging system for determining sub-diffuse scattering parameters of a material includes a structured-light illuminator, for illuminating the material with structured light of periodic spatial structure, and a camera for capturing images of the remission of the structured light by the material. The structured-light imaging system further includes an analysis module for processing the images to quantitatively determine the sub-diffuse scattering parameters. A software product includes machine-readable instructions for analyzing images of remission of structured light by a material to determine sub-diffuse scattering parameters of the material.
    Type: Application
    Filed: November 4, 2019
    Publication date: March 5, 2020
    Inventors: Stephen Chad Kanick, Brian William Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III, Venkataramanan Krishnaswamy
  • Patent number: 10463256
    Abstract: A method for determining sub-diffuse scattering parameters of a material includes illuminating the material with structured light and imaging remission by the material of the structured light. The method further includes determining, from captured remission images, sub-diffuse scattering parameters of the material. A structured-light imaging system for determining sub-diffuse scattering parameters of a material includes a structured-light illuminator, for illuminating the material with structured light of periodic spatial structure, and a camera for capturing images of the remission of the structured light by the material. The structured-light imaging system further includes an analysis module for processing the images to quantitatively determine the sub-diffuse scattering parameters. A software product includes machine-readable instructions for analyzing images of remission of structured light by a material to determine sub-diffuse scattering parameters of the material.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: November 5, 2019
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Stephen Chad Kanick, Brian William Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III, Venkataramanan Krishnaswamy
  • Patent number: 10201718
    Abstract: A system for providing monitored radiation therapy has a high energy radiation source, apparatus for excluding uncontrolled ambient light, and apparatus for collecting light emitted from a subject. The system has apparatus for spectrally analyzing the collected light, and a processor for determining oxygenation or other metabolic function of tissue within the subject from spectral analysis of the collected light. The system monitors radiation therapy by providing a beam of high energy radiation; collecting Cherenkov and/or photoluminescent light from the subject, the light generated along the beam; spectrally analyzing the light; and determining oxygenation or metabolic function of tissue from the spectral analysis. Beam profile of the system is calibrated by imaging from multiple angles Cherenkov and/or photoluminescent light emitted by a phantom placed in the beam in lieu of a subject, captured images are analyzed to determine beam profile.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: February 12, 2019
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Brian William Pogue, David Joseph Gladstone, Scott Christian Davis, Johan Jakob Axelsoon, Adam Kenneth Glaser, Rongxiao Zhang
  • Publication number: 20170119330
    Abstract: An apparatus and method for medical imaging uses a first and second contrast agent, the second agent targeted to a particular tissue type. First images are obtained using the first agent, and second images using the second agent using medical imaging systems. An image processing system is adapted to process the first and second medical images by fitting parameters of a pharmacokinetic model to the first medical images, identifying a nontargeted tissue type, scaling the fitted parameters to best match the nontargeted tissue in the second medical images, executing the pharmacokinetic model to prepare a correction image, and generating corrected medical images by subtracting the correction image from the second medical images.
    Type: Application
    Filed: January 9, 2017
    Publication date: May 4, 2017
    Inventors: Kenneth M. TICHAUER, Scott C. DAVIS, Brian William POGUE
  • Publication number: 20160263402
    Abstract: A monitor for pulsed high energy radiation therapy using a radiation beam passing through a treatment zone, the radiation of 0.2 MEV or greater; has a camera for imaging Cherenkov light from the treatment zone; apparatus for preventing interference by room lighting, the camera synchronized to pulses of the radiation beam; and an image processor adapted to determine extent of the beam area on the patient skin from the images. Additionally an image processor determines cumulative skin dose in the treatment zone from the images. In embodiments, the processor uses a three-dimensional model of a subject to determine mapping of image intensity in images of Cherenkov light to radiation intensity in skin, applies the mapping to images of Cherenkov light to verify skin dose delivered, and accumulates skin dose by summing the maps of skin dose.
    Type: Application
    Filed: May 20, 2016
    Publication date: September 15, 2016
    Inventors: Rongxiao Zhang, Brian William Pogue, Adam K. Glaser, David J. Gladstone, Lesley A. Jarvis, Jacqueline M. Andreozzi, Shudong Jiang, Scott Christian Davis, Johan Jakob Axelsson
  • Publication number: 20160157723
    Abstract: A method for determining sub-diffuse scattering parameters of a material includes illuminating the material with structured light and imaging remission by the material of the structured light. The method further includes determining, from captured remission images, sub-diffuse scattering parameters of the material. A structured-light imaging system for determining sub-diffuse scattering parameters of a material includes a structured-light illuminator, for illuminating the material with structured light of periodic spatial structure, and a camera for capturing images of the remission of the structured light by the material. The structured-light imaging system further includes an analysis module for processing the images to quantitatively determine the sub-diffuse scattering parameters. A software product includes machine-readable instructions for analyzing images of remission of structured light by a material to determine sub-diffuse scattering parameters of the material.
    Type: Application
    Filed: February 2, 2016
    Publication date: June 9, 2016
    Inventors: Stephen Chad Kanick, Brian William Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III, Venkataramanan Krishnaswamy
  • Patent number: 9254103
    Abstract: An imaging system has a microscope having an objective lens and a projection device configured to project spatially modulated light in one of several preselected predetermined pattern through the objective lens and onto tissue. The system camera configured to record an image of the tissue through the microscope and objective lens as illuminated by the spatially modulated light, and an image processor having a memory with a routine for performing spatial Fourier analysis on the image of the tissue to recover spatial frequencies. The image processor also constructs a three dimensional model of the tissue, and performs fitting of at least absorbance and scattering parameters of voxels of the model to match the recovered spatial frequencies. The processor then displays tomographic slices of the three dimensional model.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: February 9, 2016
    Assignee: The Trustees of Dartmouth College
    Inventors: Venkataramanan Krishnaswamy, Brian William Pogue
  • Publication number: 20150150460
    Abstract: A tissue classifying system uses central illumination while detecting scattered light received from one or more rings surrounding the central illumination. A broadband illuminator is used. Received light couples to a spectrographic detection system that provides data to a processor with machine readable instructions for determining a classification of a type of tissue illuminated by the system. A scanner is used to generate a map of tissue classification for use by a surgeon who may remove additional tissue from a surgical wound to ensure complete treatment. Embodiments include a scanner that maps tissue classification across tissue, and a scanner coupled to a coherent optical bundle that may be placed in contact with tissue along boundaries of an operative wound. Other embodiments are adapted to scan tissue for fluorescent emissions and/or polarization shifts between incident and scattered light.
    Type: Application
    Filed: June 7, 2013
    Publication date: June 4, 2015
    Inventors: Venkataramanan Krishnaswamy, Brian William Pogue, Ashley Marie Laughney, Keith Paulsen
  • Patent number: 8886284
    Abstract: Optical devices for use with a magnetic resonance imaging breast compression system include light wands and optical adapters that can releasably mate with grids. These devices, and their associated methods, may reduce or eliminate the need for biopsy by allowing for the differentiation of cancerous tumors, non-cancerous tumors, calcifications and cysts.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: November 11, 2014
    Assignee: The Trustees of Dartmouth College
    Inventors: Brian William Pogue, Colin Morehouse Carpenter, Scott Christian Davis, Keith Douglas Paulsen, Phaneendra K. Yalavarthy, Hamid Dehghani
  • Publication number: 20140114150
    Abstract: A system for providing monitored radiation therapy has a high energy radiation source, apparatus for excluding uncontrolled ambient light, and apparatus for collecting light emitted from a subject. The system has apparatus for spectrally analyzing the collected light, and a processor for determining oxygenation or other metabolic function of tissue within the subject from spectral analysis of the collected light. The system monitors radiation therapy by providing a beam of high energy radiation; collecting Cherenkov and/or photoluminescent light from the subject, the light generated along the beam; spectrally analyzing the light; and determining oxygenation or metabolic function of tissue from the spectral analysis. Beam profile of the system is calibrated by imaging from multiple angles Cherenkov and/or photoluminescent light emitted by a phantom placed in the beam in lieu of a subject, captured images are analyzed to determine beam profile.
    Type: Application
    Filed: May 18, 2012
    Publication date: April 24, 2014
    Applicant: The Trustees of Dartmouth College
    Inventors: Brian William Pogue, David Joseph Gladstone, Scott Christian Davis, Johan Jakob Axelsoon, Adam Kenneth Glaser, Rongxiao Zhang
  • Patent number: 8634082
    Abstract: A diffuse optical tomography system incorporating a mode-locked, tunable laser produces pulsed light that may be used to interrogate tissue with high spatial and spectral resolution. The detection signal may be heterodyne shifted to lower frequencies to allow easy and accurate measurement of phase and amplitude. Embodiments incorporating wavelength-swept, tunable, lasers and embodiments using broadband photonic fiber lasers with spectrally-sensitive detectors are described.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: January 21, 2014
    Assignee: The Trustess of Dartmouth College
    Inventors: Shudong Jiang, Brian William Pogue, Jia Wang, Keith D. Paulsen
  • Publication number: 20130338479
    Abstract: A method and apparatus is described for optically scanning a field of view, the field of view including at least part of an organ as exposed during surgery, and for identifying and classifying areas of tumor within the field of view. The apparatus obtains a spectrum at each pixel of the field of view, and classifies pixels with a kNN-type or neural network classifier previously trained on samples of tumor and organ classified by a pathologist. Embodiments use statistical parameters extracted from each pixel and neighboring pixels. Results are displayed as a color-encoded map of tissue types to the surgeon. In variations, the apparatus provides light at one or more fluorescence stimulus wavelengths and measures the fluorescence light spectrum emitted from tissue corresponding to each stimulus wavelength. The measured emitted fluorescence light spectra are further used by the classifier to identify tissue types in the field of view.
    Type: Application
    Filed: December 18, 2009
    Publication date: December 19, 2013
    Applicants: UNIVERSIDAD DE CANTABRIA, THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Brian William Pogue, Venkataramanan Krishnaswamy, Keith D. Paulsen, Pilar Beatriz Garcia Allende, Olga Maria Conde, José Miguel Lopez-Higuera
  • Publication number: 20130044185
    Abstract: An imaging system has a microscope having an objective lens and a projection device configured to project spatially modulated light in one of several preselected predetermined pattern through the objective lens and onto tissue. The system camera configured to record an image of the tissue through the microscope and objective lens as illuminated by the spatially modulated light, and an image processor having a memory with a routine for performing spatial Fourier analysis on the image of the tissue to recover spatial frequencies. The image processor also constructs a three dimensional model of the tissue, and performs fitting of at least absorbance and scattering parameters of voxels of the model to match the recovered spatial frequencies. The processor then displays tomographic slices of the three dimensional model.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 21, 2013
    Inventors: Venkataramanan Krishnaswamy, Brian William Pogue
  • Patent number: 8000775
    Abstract: Optical tomography systems that provide light of multiple distinct wavelengths from a plurality of sources are described. The systems direct light into mammalian tissue, and light from the mammalian tissue is collected at a plurality of reception points. Collected light from each reception point is separated according to its wavelength, and received by a photodetector to produce path attenuation signals representing attenuation along paths between the source locations and the reception points. An image construction system generates a tomographic image of the mammalian tissue from the path attenuation signals. One embodiment of an optical imaging system includes an optical coherence tomography-near infrared probe. The systems and methods may utilize a spectral derivative approach that provides insensitivity to the boundary and boundary artifacts in the signal, thereby improving the quality of the reconstructed images.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: August 16, 2011
    Assignee: The Trustees of Dartmouth College
    Inventors: Brian William Pogue, Daqing Piao, Keith D. Paulsen, Shudong Jiang, Hamid Dehghani, Heng Xu, Roger Springett, Subhadra Srinivasan