Patents by Inventor Brian Wisnoskey

Brian Wisnoskey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220218999
    Abstract: Methods and systems are provided for a rate adaptive bi-ventricular fusion pacing. The methods and systems deliver a first pulse at a left ventricular (LV) lead and a second pulse at a right ventricular (RV) lead based on a paced atrio-ventricular (AV) delay. The first pulse timed to be delivered concurrently with an intrinsic ventricular conduction. The methods and systems further repeat the delivery of the first pulse and the second pulse for a predetermined number of cycles. Additionally, the methods and systems measure an intrinsic AV conduction interval, and adjust the paced AV delay based on the intrinsic AV conduction interval and a negative hysteresis delta.
    Type: Application
    Filed: April 1, 2022
    Publication date: July 14, 2022
    Inventor: Brian Wisnoskey
  • Patent number: 11311733
    Abstract: Methods and systems are provided for a rate adaptive bi-ventricular fusion pacing. The methods and systems deliver a first pulse at a left ventricular (LV) lead and a second pulse at a right ventricular (RV) lead based on a paced atrio-ventricular (AV) delay. The first pulse timed to be delivered concurrently with an intrinsic ventricular conduction. The methods and systems further repeat the delivery of the first pulse and the second pulse for a predetermined number of cycles. Additionally, the methods and systems measure an intrinsic AV conduction interval, and adjust the paced AV delay based on the intrinsic AV conduction interval and a negative hysteresis delta.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: April 26, 2022
    Assignee: PACESETTER, INC.
    Inventor: Brian Wisnoskey
  • Patent number: 10967189
    Abstract: Baseline BiV pacing is delivered and a corresponding baseline BiV efficacy score is determined. Intrinsic AV conduction is allowed and an intrinsic AV conduction interval is determined. BiV fusion pacing is delivered and a corresponding efficacy score is determined, for each of a plurality of different paced AV delays, each determined based on the intrinsic AV conduction interval and a different negative hysteresis delta. The baseline BiV pacing is selected for delivery during a period of time if the baseline BiV efficacy score is better than all of the efficacy scores. BiV fusion pacing is selected for delivery during the period of time, using one of the plurality of different paced AV delays for which a corresponding efficacy score was determined, if the efficacy score corresponding to at least one of the plurality of different paced AV delays is better than the baseline BiV efficacy score.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: April 6, 2021
    Assignee: Pacesetter, Inc.
    Inventors: Brian Wisnoskey, Yelena Nabutovsky, Jennifer Rhude, Gary Cranke
  • Publication number: 20190091478
    Abstract: Baseline BiV pacing is delivered and a corresponding baseline BiV efficacy score is determined. Intrinsic AV conduction is allowed and an intrinsic AV conduction interval is determined. BiV fusion pacing is delivered and a corresponding efficacy score is determined, for each of a plurality of different paced AV delays, each determined based on the intrinsic AV conduction interval and a different negative hysteresis delta. The baseline BiV pacing is selected for delivery during a period of time if the baseline BiV efficacy score is better than all of the efficacy scores. BiV fusion pacing is selected for delivery during the period of time, using one of the plurality of different paced AV delays for which a corresponding efficacy score was determined, if the efficacy score corresponding to at least one of the plurality of different paced AV delays is better than the baseline BiV efficacy score.
    Type: Application
    Filed: November 29, 2018
    Publication date: March 28, 2019
    Applicant: Pacesetter, Inc.
    Inventors: Brian Wisnoskey, Yelena Nabutovsky, Jennifer Rhude, Gary Cranke
  • Patent number: 10173066
    Abstract: Baseline BiV pacing is delivered and a corresponding baseline BiV efficacy score is determined. Intrinsic AV conduction is allowed and an intrinsic AV conduction interval is determined. BiV fusion pacing is delivered and a corresponding NAVH efficacy score is determined, for each of a plurality of different paced AV delays, each determined based on the intrinsic AV conduction interval and a different negative hysteresis delta. The baseline BiV pacing is selected for delivery during a period of time if the baseline BiV efficacy score is better than all of the NAVH efficacy scores. BiV fusion pacing is selected for delivery during the period of time, using one of the plurality of different paced AV delays for which a corresponding NAVH efficacy score was determined, if the NAVH efficacy score corresponding to at least one of the plurality of different paced AV delays is better than the baseline BiV efficacy score.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: January 8, 2019
    Assignee: Pacesetter, Inc.
    Inventors: Brian Wisnoskey, Yelena Nabutovsky, Jennifer Rhude, Gary Cranke
  • Publication number: 20180056076
    Abstract: Baseline BiV pacing is delivered and a corresponding baseline BiV efficacy score is determined. Intrinsic AV conduction is allowed and an intrinsic AV conduction interval is determined. BiV fusion pacing is delivered and a corresponding NAVH efficacy score is determined, for each of a plurality of different paced AV delays, each determined based on the intrinsic AV conduction interval and a different negative hysteresis delta. The baseline BiV pacing is selected for delivery during a period of time if the baseline BiV efficacy score is better than all of the NAVH efficacy scores. BiV fusion pacing is selected for delivery during the period of time, using one of the plurality of different paced AV delays for which a corresponding NAVH efficacy score was determined, if the NAVH efficacy score corresponding to at least one of the plurality of different paced AV delays is better than the baseline BiV efficacy score.
    Type: Application
    Filed: August 30, 2016
    Publication date: March 1, 2018
    Inventors: Brian Wisnoskey, Yelena Nabutovsky, Jennifer Rhude, Gary Cranke
  • Publication number: 20170216599
    Abstract: Methods and systems are provided for a rate adaptive bi-ventricular fusion pacing. The methods and systems deliver a first pulse at a left ventricular (LV) lead and a second pulse at a right ventricular (RV) lead based on a paced atrio-ventricular (AV) delay. The first pulse timed to be delivered concurrently with an intrinsic ventricular conduction. The methods and systems further repeat the delivery of the first pulse and the second pulse for a predetermined number of cycles. Additionally, the methods and systems measure an intrinsic AV conduction interval, and adjust the paced AV delay based on the intrinsic AV conduction interval and a negative hysteresis delta.
    Type: Application
    Filed: February 3, 2016
    Publication date: August 3, 2017
    Inventor: Brian Wisnoskey