Patents by Inventor Brien A. Stears

Brien A. Stears has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240050927
    Abstract: According to one or more embodiments of the present disclosure, a catalyst system useful for dehydrogenation includes from 98 vol. % to 99.95 vol. % of a catalyst and from 0.05 vol. % to 2 vol. % of a combustion additive. The catalyst may include from 1 ppmw to 150 ppmw platinum, gallium, and a support material. The combustion additive may include from 150 ppmw to 1,000 ppmw platinum, gallium, and a support material. The combustion additive may include at least 1.1 times greater platinum than the catalyst.
    Type: Application
    Filed: December 15, 2021
    Publication date: February 15, 2024
    Applicant: Dow Global Technologies LLC
    Inventors: Lin Luo, Yang Yang, Adrianus Koeken, Brien Stears, Luis Bollmann, Andrzej Malek, Brian W. Goodfellow
  • Publication number: 20240051901
    Abstract: According to one or more embodiments of the present disclosure, a method for producing olefins includes contacting a hydrocarbon-containing feed with a catalyst in a reactor portion of a reactor system to form an olefin-containing effluent, separating at least a portion of the olefin-containing effluent from the catalyst, passing the catalyst to a catalyst-processing portion of the reactor system and processing the catalyst to produce a processed catalyst and a combustion gas, passing the processed catalyst from the catalyst-processing portion to the reactor portion, and introducing a combustion additive to the reactor system when the combustion gas comprises one or more hydrocarbons in an amount greater than 5% of an LFL of the combustion gas at a temperature and pressure of the catalyst processing portion. The catalyst may include from 1 ppmw to 150 ppmw platinum. The combustion additive may include from 150 ppmw to 1,000 ppmw platinum.
    Type: Application
    Filed: December 15, 2021
    Publication date: February 15, 2024
    Applicant: Dow Global Technologies LLC
    Inventors: Lin Luo, Yang Yang, Adrianus Koeken, Brien Stears, Luis Bollmann, Andrzej Malek, Brian W. Goodfellow
  • Patent number: 11845721
    Abstract: A method for separating CO2 from C2 to C5 alkanes includes introducing a first stream including C2 to C5 alkanes and CO2 into a first separation zone, the first separation zone including a hydrocarbon solvent, and separating the first stream into a recycle stream and a second stream in the first separation zone. The recycle stream including CO2 and one or more of CO, H2, and CH4, and the second stream including C2 to C5 alkanes. The method further includes introducing the second stream into a second separation zone, and separating the second stream into a third stream and a fourth stream, wherein the third stream includes C2 alkanes and the fourth stream includes C3 to C5 alkanes.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: December 19, 2023
    Assignee: Dow Global Technologies LLC
    Inventors: Barry Brent Fish, Peter E. Groenendijk, Andrzej Malek, Davy L. S. Nieskens, Brien A. Stears
  • Publication number: 20230257327
    Abstract: According to one or more embodiments described herein, a method for dehydrogenating hydrocarbons may include passing a hydrocarbon feed comprising one or more alkanes or alkyl aromatics into a fluidized bed reactor, contacting the hydrocarbon feed with a dehydrogenation catalyst in the fluidized bed reactor to produce a dehydrogenated product and hydrogen, and contacting the hydrogen with an oxygen-rich oxygen carrier material in the fluidized bed reactor to combust the hydrogen and form an oxygen-diminished oxygen carrier material. In additional embodiments, a dual-purpose material may be utilized which has dehydrogenation catalyst and oxygen carrying functionality.
    Type: Application
    Filed: April 26, 2023
    Publication date: August 17, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Kevin Blann, Alexey Kirilin, Andrzej Malek, Victor Sussman, Matthew T. Pretz, Brien A. Stears, Barry B. Fish, Eric E. Stangland, Brian W. Goodfellow, Manish Sharma
  • Patent number: 11724974
    Abstract: According to one or more embodiments described herein, a method for dehydrogenating hydrocarbons may include passing a hydrocarbon feed comprising one or more alkanes or alkyl aromatics into a fluidized bed reactor, contacting the hydrocarbon feed with a dehydrogenation catalyst in the fluidized bed reactor to produce a dehydrogenated product and hydrogen, and contacting the hydrogen with an oxygen-rich oxygen carrier material in the fluidized bed reactor to combust the hydrogen and form an oxygen-diminished oxygen carrier material. In additional embodiments, a dual-purpose material may be utilized which has dehydrogenation catalyst and oxygen carrying functionality.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: August 15, 2023
    Assignee: Dow Global Technologies LLC
    Inventors: Kevin Blann, Alexey Kirilin, Andrzej Malek, Victor Sussman, Matthew T. Pretz, Brien A. Stears, Barry B. Fish, Eric E. Stangland, Brian W. Goodfellow, Manish Sharma
  • Publication number: 20220289647
    Abstract: A method for separating CO2 from C2 to C5 alkanes includes introducing a first stream including C2 to C5 alkanes and CO2 into a first separation zone, the first separation zone including a hydrocarbon solvent, and separating the first stream into a recycle stream and a second stream in the first separation zone. The recycle stream including CO2 and one or more of CO, H2, and CH4, and the second stream including C2 to C5 alkanes. The method further includes introducing the second stream into a second separation zone, and separating the second stream into a third stream and a fourth stream, wherein the third stream includes C2 alkanes and the fourth stream includes C3 to C5 alkanes.
    Type: Application
    Filed: June 1, 2022
    Publication date: September 15, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Barry Brent Fish, Peter E. Groenendijk, Andrzej Malek, Davy L.S. Nieskens, Brien A. Stears
  • Patent number: 11377403
    Abstract: A method for separating CO2 from C2 to C5 alkanes includes introducing a first stream including C2 to C5 alkanes and CO2 into a first separation zone, the first separation zone including a hydrocarbon solvent, and separating the first stream into a recycle stream and a second stream in the first separation zone. The recycle stream including CO2 and one or more of CO, H2, and CH4, and the second stream including C2 to C5 alkanes. The method further includes introducing the second stream into a second separation zone, and separating the second stream into a third stream and a fourth stream, wherein the third stream includes C2 alkanes and the fourth stream includes C3 to C5 alkanes.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: July 5, 2022
    Assignee: Dow Global Technologies LLC
    Inventors: Barry Brent Fish, Peter E. Groenendijk, Andrzej Malek, Davy L. S. Nieskens, Brien A. Stears
  • Patent number: 11220469
    Abstract: A process for converting a feed stream having carbon to C2 to C5 olefins, includes introducing a feed stream including methane and oxygen to a first reaction zone, reacting the methane and oxygen in the first reaction zone to form a first reaction zone product stream having a mixture of C2 to C5 alkanes, transporting the mixture of C2 to C5 alkanes to a second reaction zone, introducing a fresh stream of at least one of ethane and propane to the second reaction zone, converting the C2 to C5 alkanes to C2 to C5 olefins in the second reaction zone, producing one or more product streams in the second reaction zone, where a sum of the one or more product streams includes C2 to C5 olefins, and producing a recycle stream comprising hydrogen in the second reaction zone, where the recycle stream is transported to the first reaction zone.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: January 11, 2022
    Assignee: Dow Global Technologies LLC
    Inventors: Barry B. Fish, Peter E. Groenendijk, Davy L. S. Nieskens, Andrzej Malek, Brien A. Stears
  • Publication number: 20210292259
    Abstract: According to one or more embodiments described herein, a method for dehydrogenating hydrocarbons may include passing a hydrocarbon feed comprising one or more alkanes or alkyl aromatics into a fluidized bed reactor, contacting the hydrocarbon feed with a dehydrogenation catalyst in the fluidized bed reactor to produce a dehydrogenated product and hydrogen, and contacting the hydrogen with an oxygen-rich oxygen carrier material in the fluidized bed reactor to combust the hydrogen and form an oxygen-diminished oxygen carrier material. In additional embodiments, a dual-purpose material may be utilized which has dehydrogenation catalyst and oxygen carrying functionality.
    Type: Application
    Filed: August 27, 2019
    Publication date: September 23, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Kevin Blann, Alexey Kirilin, Andrzej Malek, Victor Sussman, Matthew T. Pretz, Brien A. Stears, Barry B. Fish, Eric E. Stangland, Brian W. Goodfellow, Manish Sharma
  • Publication number: 20210198164
    Abstract: A process for converting a feed stream having carbon to C2 to C5 olefins, includes introducing a feed stream including methane and oxygen to a first reaction zone, reacting the methane and oxygen in the first reaction zone to form a first reaction zone product stream having a mixture of C2 to C5 alkanes, transporting the mixture of C2 to C5 alkanes to a second reaction zone, introducing a fresh stream of at least one of ethane and propane to the second reaction zone, converting the C2 to C5 alkanes to C2 to C5 olefins in the second reaction zone, producing one or more product streams in the second reaction zone, where a sum of the one or more product streams includes C2 to C5 olefins, and producing a recycle stream comprising hydrogen in the second reaction zone, where the recycle stream is transported to the first reaction zone.
    Type: Application
    Filed: October 9, 2018
    Publication date: July 1, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Barry B. Fish, Peter E. Groenendijk, Davy L.S. Nieskens, Andrzej Malek, Brien A. Stears
  • Patent number: 10808999
    Abstract: A process for recovery of C2 and C3 components in an on-purpose propylene production system includes utilizing a packed rectifier with a countercurrent stream to strip C2 and C3 components from a combined de-ethanizer overhead lights vapor and cracked gas vapor stream.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: October 20, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Isa K. Mbaraka, William L. Jackson, Jr., Martin A. Cogswell, Mark Siddoway, Brien A. Stears
  • Patent number: 10589242
    Abstract: According to one or more embodiments, a fluid catalytic reactor may include a riser, a lower reactor portion, a transition portion, and a flow director. The riser may include a cross-sectional area, and the lower reactor portion may include a cross-sectional area. The transition portion may attach the riser to the lower reactor portion. The cross-sectional area of the riser may be less than the cross-sectional area of the lower reactor portion such that the transition portion is tapered inward from the lower reactor portion to the riser. The flow director may be positioned at least within an interior region of the transition portion. The flow director may include a body which affects the velocity profile of fluids moving from the lower reactor portion to the riser.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: March 17, 2020
    Assignee: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Mark W. Stewart, Ben J. Freireich, Madhusudhan Kodam, Brien A. Stears
  • Publication number: 20200055801
    Abstract: A method for separating CO2 from C2 to C5 alkanes includes introducing a first stream including C2 to C5 alkanes and CO2 into a first separation zone, the first separation zone including a hydrocarbon solvent, and separating the first stream into a recycle stream and a second stream in the first separation zone. The recycle stream including CO2 and one or more of CO, H2, and CH4, and the second stream including C2 to C5 alkanes. The method further includes introducing the second stream into a second separation zone, and separating the second stream into a third stream and a fourth stream, wherein the third stream includes C2 alkanes and the fourth stream includes C3 to C5 alkanes.
    Type: Application
    Filed: April 25, 2018
    Publication date: February 20, 2020
    Applicant: Dow Global Technologies LLC
    Inventors: Barry Brent Fish, Peter E. Groenendijk, Andrzej Malek, Davy L.S. Nieskens, Brien A. Stears
  • Patent number: 10507448
    Abstract: According to one or more embodiments of the present disclosure, a fluid catalytic reactor may be scaled-up by a method that includes one or more of constructing, operating, observing, or obtaining data related to a template fluid catalytic reactor comprising a template riser, a template lower reactor portion, and a template transition portion connecting the template riser and the template lower reactor portion. The method may further include one or more of constructing or operating a scaled-up fluid catalytic reactor based on the template fluid catalytic reactor.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: December 17, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Ben J. Freireich, Madhusudhan Kodam, Brien A. Stears
  • Publication number: 20190282987
    Abstract: According to one or more embodiments of the present disclosure, a fluid catalytic reactor may be scaled-up by a method that includes one or more of constructing, operating, observing, or obtaining data related to a template fluid catalytic reactor comprising a template riser, a template lower reactor portion, and a template transition portion connecting the template riser and the template lower reactor portion. The method may further include one or more of constructing or operating a scaled-up fluid catalytic reactor based on the template fluid catalytic reactor.
    Type: Application
    Filed: October 30, 2017
    Publication date: September 19, 2019
    Applicant: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Ben J. Freireich, Madhusudhan Kodam, Brien A. Stears
  • Patent number: 10392319
    Abstract: Manage sulfur present as sulfur or a sulfur compound in a hydrocarbon feedstream while effecting dehydrogenation of hydrocarbon(s) (e.g. propane) contained in the hydrocarbon feedstream to its/their corresponding olefin (e.g. propylene where the hydrocarbon is propane) without subjecting the feedstream to desulfurization before it contacts a fluidizable dehydrogenation catalyst that is both a desulfurant and a dehydrogenation catalyst and comprises gallium and platinum on an alumina or alumina-silica catalyst support with optional alkali or alkaline earth metal such as potassium. Contact with such a catalyst yields a desulfurized crude olefin product that corresponds to the hydrocarbon and has a reduced amount of sulfur or sulfur compounds relative to the sulfur or sulfur compounds present in the hydrocarbon feedstream prior to contact with the catalyst.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: August 27, 2019
    Assignee: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Lin Luo, Brien A. Stears, Mark W. Stewart
  • Publication number: 20190255498
    Abstract: According to one or more embodiments, a fluid catalytic reactor may include a riser, a lower reactor portion, a transition portion, and a flow director. The riser may include a cross-sectional area, and the lower reactor portion may include a cross-sectional area. The transition portion may attach the riser to the lower reactor portion. The cross-sectional area of the riser may be less than the cross-sectional area of the lower reactor portion such that the transition portion is tapered inward from the lower reactor portion to the riser. The flow director may be positioned at least within an interior region of the transition portion. The flow director may include a body which affects the velocity profile of fluids moving from the lower reactor portion to the riser.
    Type: Application
    Filed: October 25, 2017
    Publication date: August 22, 2019
    Applicant: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Mark W. Stewart, Ben J. Freireich, Madhusudhan Kodam, Brien A. Stears
  • Patent number: 10065905
    Abstract: Increase propane dehydrogenation activity of a partially deactivated dehydrogenation catalyst by heating the partially deactivated catalyst to a temperature of at least 660° C., conditioning the heated catalyst in an oxygen-containing atmosphere and, optionally, stripping molecular oxygen from the conditioned catalyst.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: September 4, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Matthew Pretz, Lin Luo, Susan Domke, Howard W. Clark, Richard A. Pierce, Andrzej M. Malek, Mark W. Stewart, Brien A. Stears, Albert E. Schweizer, Jr., Guido Capone, Duncan P. Coffey, Isa K. Mbaraka
  • Publication number: 20180057422
    Abstract: Increase propane dehydrogenation activity of a partially deactivated dehydrogenation catalyst by heating the partially deactivated catalyst to a temperature of at least 660° C., conditioning the heated catalyst in an oxygen-containing atmosphere and, optionally, stripping molecular oxygen from the conditioned catalyst.
    Type: Application
    Filed: October 31, 2017
    Publication date: March 1, 2018
    Inventors: Matthew Pretz, Lin Luo, Susan Domke, Howard W. Clark, Richard A. Pierce, Andrzej M. Malek, Mark W. Stewart, Brien A. Stears, Albert E. Schweizer, JR., Guido Capone, Duncan P. Coffey, Isa K. Mbaraka
  • Patent number: 9884314
    Abstract: A catalyst comprising a Group IIIA metal, a Group VIII noble metal, and an optional promoter metal, on a support selected from silica, alumina, silica-alumina compositions, rare earth modified alumina, and combinations thereof, doped with iron, a Group VIB metal, a Group VB metal, or a combination thereof, offers decreased reactivation time under air soak in comparison with otherwise identical catalysts. Reducing reactivation time may, in turn, reduce costs, both in inventory and capital.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: February 6, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Lin Luo, Brien A. Stears