Patents by Inventor Brigitte Toljagic

Brigitte Toljagic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240328329
    Abstract: An integrally bladed rotor (IBR) for a gas turbine engine is provided. The IBR includes a hub, rotor blades that include a test blade, and at least one heating element. Each rotor blade has an airfoil with leading and trailing edges, suction side and pressure side surfaces, and a base end. The airfoil of the test blade includes at least one slot defining a void in the airfoil. The slot extends a lengthwise distance into the airfoil along a direction generally between the leading and trailing edges of the airfoil and terminates at a slot end surface. The airfoil includes at least one internal cavity extending lengthwise from the slot end surface. The heating element is disposed in the internal cavity and selectively produces thermal energy sufficient to heat the airfoil material proximate the internal cavity to a temperature at which the airfoil mechanical strength properties are decreased.
    Type: Application
    Filed: June 10, 2024
    Publication date: October 3, 2024
    Inventors: Yongsheng Zhou, Brigitte Toljagic
  • Publication number: 20240229675
    Abstract: An integrally bladed rotor (IBR) for a gas turbine engine is provided. The IBR includes a hub, rotor blades that include a test blade, and at least one heating element. Each rotor blade has an airfoil with leading and trailing edges, suction side and pressure side surfaces, and a base end. The airfoil of the test blade includes at least one slot defining a void in the airfoil. The slot extends a lengthwise distance into the airfoil along a direction generally between the leading and trailing edges of the airfoil and terminates at a slot end surface. The airfoil includes at least one internal cavity extending lengthwise from the slot end surface. The heating element is disposed in the internal cavity and selectively produces thermal energy sufficient to heat the airfoil material proximate the internal cavity to a temperature at which the airfoil mechanical strength properties are decreased.
    Type: Application
    Filed: October 21, 2022
    Publication date: July 11, 2024
    Inventors: Yongsheng Zhou, Brigitte Toljagic
  • Patent number: 12006830
    Abstract: An integrally bladed rotor (IBR) for a gas turbine engine is provided. The IBR includes a hub, rotor blades that include a test blade, and at least one heating element. Each rotor blade has an airfoil with leading and trailing edges, suction side and pressure side surfaces, and a base end. The airfoil of the test blade includes at least one slot defining a void in the airfoil. The slot extends a lengthwise distance into the airfoil along a direction generally between the leading and trailing edges of the airfoil and terminates at a slot end surface. The airfoil includes at least one internal cavity extending lengthwise from the slot end surface. The heating element is disposed in the internal cavity and selectively produces thermal energy sufficient to heat the airfoil material proximate the internal cavity to a temperature at which the airfoil mechanical strength properties are decreased.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: June 11, 2024
    Assignee: Pratt & Whitney Canada Corp.
    Inventors: Yongsheng Zhou, Brigitte Toljagic
  • Publication number: 20240133315
    Abstract: An integrally bladed rotor (IBR) for a gas turbine engine is provided. The IBR includes a hub, rotor blades that include a test blade, and at least one heating element. Each rotor blade has an airfoil with leading and trailing edges, suction side and pressure side surfaces, and a base end. The airfoil of the test blade includes at least one slot defining a void in the airfoil. The slot extends a lengthwise distance into the airfoil along a direction generally between the leading and trailing edges of the airfoil and terminates at a slot end surface. The airfoil includes at least one internal cavity extending lengthwise from the slot end surface. The heating element is disposed in the internal cavity and selectively produces thermal energy sufficient to heat the airfoil material proximate the internal cavity to a temperature at which the airfoil mechanical strength properties are decreased.
    Type: Application
    Filed: October 20, 2022
    Publication date: April 25, 2024
    Inventors: Yongsheng Zhou, Brigitte Toljagic