Patents by Inventor Britta Wutte

Britta Wutte has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200203525
    Abstract: A transistor device with a gate electrode in a vertical gate trench is described. The gate electrode includes a silicon gate region and a metal inlay region. The silicon gate region forms at least a section of a sidewall of the gate electrode. The metal inlay region extends up from a lower end of the gate electrode.
    Type: Application
    Filed: December 17, 2019
    Publication date: June 25, 2020
    Inventors: Robert Paul Haase, Jyotshna Bhandari, Heimo Hofer, Ling Ma, Ashita Mirchandani, Harsh Naik, Martin Poelzl, Martin Henning Vielemeyer, Britta Wutte
  • Patent number: 10529845
    Abstract: In an embodiment, a semiconductor device includes a semiconductor body having a field effect transistor device with an active region and an edge termination region that surrounds the active region on all sides. The active region includes a first serpentine trench in the semiconductor body, a first field plate in the first serpentine trench, a second serpentine trench in the semiconductor body, and a second field plate in the second serpentine trench. The first serpentine trench is separate and laterally spaced apart from the second serpentine trench.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: January 7, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Ashita Mirchandani, Thomas Feil, Maximilian Roesch, Britta Wutte
  • Publication number: 20190371899
    Abstract: A transistor device includes a first trench and a second trench arranged in a comb-like structure, first sections of the first and second trenches corresponding to teeth of the comb-like structure and second sections of the first and second trenches corresponding to opposing shafts of the comb-like structure. The arrangement of the first trench and the second trench forms a pattern of interdigitated fingers. Transistor cells of the transistor device are disposed between single fingers of the first and second trenches. A semiconductor mesa separates the first trench and the second trench from each other. A gate electrode in the first trench or a gate electrode in the second trench is electrically connected to a source potential instead of a gate potential to decrease a gate charge of the transistor device.
    Type: Application
    Filed: August 8, 2019
    Publication date: December 5, 2019
    Inventors: Britta Wutte, Sylvain Leomant
  • Patent number: 10475919
    Abstract: A method for producing an integrated power transistor circuit includes forming at least one transistor cell in a cell array, each transistor cell having a doped region formed in a semiconductor substrate and adjoining a first surface of the semiconductor substrate on a first side of the semiconductor substrate, depositing a contact layer on the first side, structuring the contact layer to form a contact structure from the contact layer, the contact structure having, in a projection of the cell array orthogonal to the first surface, a first section and, outside the cell array, a second section which connects the first section to an interface structure, and forming an electrode structure on and in direct contact with the first section in the orthogonal projection of the cell array, the electrode structure being absent outside the cell array.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: November 12, 2019
    Assignee: Infineon Technologies Austria AG
    Inventor: Britta Wutte
  • Patent number: 10418452
    Abstract: A semiconductor device includes a first trench and a second trench in a first main surface of a semiconductor substrate. Each of the first and second trenches includes first sections extending lengthwise in a first direction and a second section extending lengthwise in a second direction transvers to the first direction, the second section of the first trench being disposed opposite to the second section of the second trench. The semiconductor device further includes a semiconductor mesa separating the first and second trenches, and a source metal layer above the first main surface of the semiconductor substrate and electrically connected to source regions in the semiconductor mesa. Corresponding methods of manufacture are also described.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: September 17, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Britta Wutte, Sylvain Leomant
  • Publication number: 20190280117
    Abstract: In an embodiment, a semiconductor device includes a semiconductor body having a field effect transistor device with an active region and an edge termination region that surrounds the active region on all sides. The active region includes a first serpentine trench in the semiconductor body, a first field plate in the first serpentine trench, a second serpentine trench in the semiconductor body, and a second field plate in the second serpentine trench. The first serpentine trench is separate and laterally spaced apart from the second serpentine trench.
    Type: Application
    Filed: March 9, 2018
    Publication date: September 12, 2019
    Inventors: Ashita Mirchandani, Thomas Feil, Maximilian Roesch, Britta Wutte
  • Patent number: 10374078
    Abstract: A semiconductor device includes a plurality of striped-shaped trenches extending into a semiconductor substrate. At least one trench of a first group of trenches of the plurality of striped-shaped trenches is located between two trenches of a second group of trenches of the plurality of striped-shaped trenches. A gate of a transistor structure is located in each trench of the second group of trenches and a gate insulation layer is located between the gate and the semiconductor substrate in each trench of the second group of trenches. Trench insulation material is located in each trench of the first group of trenches. A thickness of the trench insulation material throughout each trench of the first group of trenches is at least two times larger than a thickness of the gate insulation layer in each trench of the second group of trenches.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: August 6, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Blank, Britta Wutte
  • Patent number: 10249723
    Abstract: A semiconductor device includes a semiconductor body having a main surface and an active region surrounded by a non-active region. A trench extends from the main surface into the semiconductor body. The trench has a stripe configuration and extends laterally within the active region. A first electrode and a first insulator are in the trench. The first insulator insulates the first electrode from the semiconductor body. The first electrode is recessed in the trench and has a planar surface extending generally parallel with and below the main surface of the semiconductor body so as to define a well in the trench that is laterally confined by the first insulator. A second insulator is on the planar surface. A second electrode is within the well of the trench, and the second insulator insulates the second electrode from the first electrode.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: April 2, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Heimo Hofer, Martin Poelzl, Maximilian Roesch, Britta Wutte
  • Publication number: 20180226481
    Abstract: A semiconductor device includes a first trench and a second trench in a first main surface of a semiconductor substrate. Each of the first and second trenches includes first sections extending lengthwise in a first direction and a second section extending lengthwise in a second direction transvers to the first direction, the second section of the first trench being disposed opposite to the second section of the second trench. The semiconductor device further includes a semiconductor mesa separating the first and second trenches, and a source metal layer above the first main surface of the semiconductor substrate and electrically connected to source regions in the semiconductor mesa. Corresponding methods of manufacture are also described.
    Type: Application
    Filed: April 9, 2018
    Publication date: August 9, 2018
    Inventors: Britta Wutte, Sylvain Leomant
  • Publication number: 20180138278
    Abstract: A semiconductor device includes a semiconductor body having a main surface and an active region surrounded by a non-active region. A trench extends from the main surface into the semiconductor body. The trench has a stripe configuration and extends laterally within the active region. A first electrode and a first insulator are in the trench. The first insulator insulates the first electrode from the semiconductor body. The first electrode is recessed in the trench and has a planar surface extending generally parallel with and below the main surface of the semiconductor body so as to define a well in the trench that is laterally confined by the first insulator. A second insulator is on the planar surface. A second electrode is within the well of the trench, and the second insulator insulates the second electrode from the first electrode.
    Type: Application
    Filed: December 26, 2017
    Publication date: May 17, 2018
    Inventors: Heimo Hofer, Martin Poelzl, Maximilian Roesch, Britta Wutte
  • Patent number: 9941354
    Abstract: A semiconductor device includes a first gate trench and a second gate trench in a first main surface of a semiconductor substrate. A mesa is arranged between the first gate trench and the second gate trench. The mesa separates the first gate trench from the second gate trench. Each of the first and second gate trenches includes first sections extending in a first direction and second sections connecting adjacent ones of the first sections. The second sections of the first gate trench are disposed opposite to the second sections of the second gate trench with respect to a plane perpendicular to the first direction.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: April 10, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Britta Wutte, Sylvain Leomant
  • Patent number: 9859385
    Abstract: A method of processing a semiconductor device is presented. The method includes providing a semiconductor body; forming a trench within the semiconductor body, the trench having a stripe configuration and extending laterally within an active region of the semiconductor body that is surrounded by a non-active region of the semiconductor body; forming, within the trench, a first electrode and a first insulator insulating the first electrode from the semiconductor body; carrying out a first etching step for partially removing the first electrode along the total lateral extension of the first electrode such that the remaining part of the first electrode has a planar surface, thereby creating a well in the trench that is laterally confined by the first insulator; depositing a second insulator on top the planar surface; and forming a second electrode within the well of the trench. The second insulator insulates the second electrode from the first electrode.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: January 2, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Heimo Hofer, Martin Poelzl, Maximilian Roesch, Britta Wutte
  • Publication number: 20170263756
    Abstract: A semiconductor device includes a plurality of striped-shaped trenches extending into a semiconductor substrate. At least one trench of a first group of trenches of the plurality of striped-shaped trenches is located between two trenches of a second group of trenches of the plurality of striped-shaped trenches. A gate of a transistor structure is located in each trench of the second group of trenches and a gate insulation layer is located between the gate and the semiconductor substrate in each trench of the second group of trenches. Trench insulation material is located in each trench of the first group of trenches. A thickness of the trench insulation material throughout each trench of the first group of trenches is at least two times larger than a thickness of the gate insulation layer in each trench of the second group of trenches.
    Type: Application
    Filed: March 10, 2017
    Publication date: September 14, 2017
    Inventors: Oliver Blank, Britta Wutte
  • Publication number: 20170236913
    Abstract: A method of processing a semiconductor device includes: creating first and second recesses in a surface of a semiconductor body; creating an insulation layer that forms first and second wells each having a common lateral extension range with the portion of the insulation layer located between the recesses; filling the wells with a plug material having the respective common lateral extension range with the insulation layer; removing a middle portion of the insulation layer located between the recesses; filling, with a filling material, a third recess created in a region where the middle portion has been removed and at least a portion of the space located between the wells; creating a first common surface of the insulation layer, the plug material, and the filling material; removing the plug material from the second well; and creating a second insulation layer that covers a side wall of the second recess.
    Type: Application
    Filed: February 8, 2017
    Publication date: August 17, 2017
    Inventors: Heimo Hofer, Martin Poelzl, Britta Wutte
  • Publication number: 20170207309
    Abstract: A method of processing a semiconductor device is presented. The method includes providing a semiconductor body; forming a trench within the semiconductor body, the trench having a stripe configuration and extending laterally within an active region of the semiconductor body that is surrounded by a non-active region of the semiconductor body; forming, within the trench, a first electrode and a first insulator insulating the first electrode from the semiconductor body; carrying out a first etching step for partially removing the first electrode along the total lateral extension of the first electrode such that the remaining part of the first electrode has a planar surface, thereby creating a well in the trench that is laterally confined by the first insulator; depositing a second insulator on top the planar surface; and forming a second electrode within the well of the trench. The second insulator insulates the second electrode from the first electrode.
    Type: Application
    Filed: January 13, 2017
    Publication date: July 20, 2017
    Inventors: Heimo Hofer, Martin Poelzl, Maximilian Roesch, Britta Wutte
  • Publication number: 20170186863
    Abstract: A method for producing an integrated power transistor circuit includes forming at least one transistor cell in a cell array, each transistor cell having a doped region formed in a semiconductor substrate and adjoining a first surface of the semiconductor substrate on a first side of the semiconductor substrate, depositing a contact layer on the first side, structuring the contact layer to form a contact structure from the contact layer, the contact structure having, in a projection of the cell array orthogonal to the first surface, a first section and, outside the cell array, a second section which connects the first section to an interface structure, and forming an electrode structure on and in direct contact with the first section in the orthogonal projection of the cell array, the electrode structure being absent outside the cell array.
    Type: Application
    Filed: March 14, 2017
    Publication date: June 29, 2017
    Inventor: Britta Wutte
  • Publication number: 20170170274
    Abstract: A semiconductor device includes a first gate trench and a second gate trench in a first main surface of a semiconductor substrate. A mesa is arranged between the first gate trench and the second gate trench. The mesa separates the first gate trench from the second gate trench. Each of the first and second gate trenches includes first sections extending in a first direction and second sections connecting adjacent ones of the first sections. The second sections of the first gate trench are disposed opposite to the second sections of the second gate trench with respect to a plane perpendicular to the first direction.
    Type: Application
    Filed: December 9, 2016
    Publication date: June 15, 2017
    Inventors: Britta Wutte, Sylvain Leomant
  • Patent number: 9634137
    Abstract: An integrated power transistor circuit includes a contact structure with a first section and a second section. The first section contacts doped regions of transistor cells in a cell array. The second section includes one or more first subsections which adjoin the first section and extend beyond the cell array in the region of selected transistor cells. A second subsection adjoins the one or more first subsections and forms a tapping line, for example for making contact with source regions of power transistor cells. In the region of the cell array, an electrode structure rests on the contact structure. This electrode structure is absent over the second section. The tapping line can thus be formed at a short distance from the electrode structure, with the result that the active chip area is only insubstantially reduced by the tapping line.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: April 25, 2017
    Assignee: Infineon Technologies Austria AG
    Inventor: Britta Wutte
  • Patent number: 9525058
    Abstract: An integrated circuit includes a power component including a plurality of first trenches in a cell array and a first conductive material in the first trenches electrically coupled to a gate terminal of the power component, and a diode component including a first diode device trench and a second diode device trench disposed adjacent to each other. A second conductive material in the first and the second diode device trenches is electrically coupled to a source terminal of the diode component. The first trenches, the first diode device trench and the second diode device trench are disposed in a first main surface of a semiconductor substrate. The integrated circuit further includes a diode gate contact including a connection structure between the first and the second diode device trenches. The connection structure is in contact with the second conductive material in the first and the second diode device trenches.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: December 20, 2016
    Assignee: Infineon Technologies Austria AG
    Inventor: Britta Wutte
  • Publication number: 20150115351
    Abstract: An integrated circuit includes a power component including a plurality of first trenches in a cell array and a first conductive material in the first trenches electrically coupled to a gate terminal of the power component, and a diode component including a first diode device trench and a second diode device trench disposed adjacent to each other. A second conductive material in the first and the second diode device trenches is electrically coupled to a source terminal of the diode component. The first trenches, the first diode device trench and the second diode device trench are disposed in a first main surface of a semiconductor substrate. The integrated circuit further includes a diode gate contact including a connection structure between the first and the second diode device trenches. The connection structure is in contact with the second conductive material in the first and the second diode device trenches.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Inventor: Britta Wutte