Patents by Inventor Brittney Cardinell

Brittney Cardinell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11747330
    Abstract: Electrochemical impedance-based label-free and rapid biosensor for select bodily fluid biomolecule levels. Monoclonal antibodies to of biomolecule such as cortisol were covalently attached to a 16-mercaptohexadecanoic acid functionalized gold working electrode using zero-length crosslinkers N-(3-dimethylaminopropyl)-N-ethylcarbodiimide and 10 mM N-hydroxysulfosuccinimide. Cortisol was detected in phosphate buffered saline (simulated tear fluid) using a simple ferrocyanide reagent with a lower limit of detection of 18.73 pM and less than 10% relative standard deviation.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: September 5, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jeffrey LaBelle, Tina Hakimi, Brittney Cardinell
  • Patent number: 11168104
    Abstract: Synthesis of novel and unique PAMAM (poly-amidoamine) polymers. PAMAM polymers can be grown by systematic alternation between ethylenediamine (EDA) and methacrylate. By taking advantage of the alternating terminal ends, successive generations G1 and G0.5 were combined under acidic conditions with Pluronic P123 as a liquid-crystal template. The resulting polymer was imaged with TEM and the product was circular and amorphous of no characteristic size ranging between about 5 nm to about 600 nm, with remarkable electrochemical activity unseen in any of the generations of PAMAM. Applications of this electroactive poly-amidoamine organic polymer include use as a new electron transfer reagent for amperometric biosensors.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: November 9, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jeffrey LaBelle, Trevor Saxman, Brittney Cardinell
  • Publication number: 20200011778
    Abstract: Osmolality and osmolality sensors and methods utilizing electrochemical impedance to detect changes in impedance to varying salinity concentrations. By way of example, the impedance reported at the specified frequency varies logarithmically with the concentration of sodium chloride subject to the sensor surface. Measurements obtained by the sensors and methods herein are utilized, for example, to differentiate between the clinical stages of dry eye disease (290-316 mOsm/L) to complement the current diagnostic procedures. Blood serum, urinalysis, and saliva also may be tested and the corresponding osmolarity or osmolality level evaluated for indications of a disease or condition.
    Type: Application
    Filed: February 7, 2018
    Publication date: January 9, 2020
    Inventors: Mackenzie Honikel, Chi Lin, Andrew Penman, Brittney Cardinell, Jeffrey LaBelle, Pierce Youngbar, Marcus Smith
  • Publication number: 20190369042
    Abstract: Electrochemical impedance-based label-free and rapid biosensor for select bodily fluid biomolecule levels. Monoclonal antibodies to of biomolecule such as cortisol were covalently attached to a 16-mercaptohexadecanoic acid functionalized gold working electrode using zero-length crosslinkers N-(3-dimethylaminopropyl)-N-ethylcarbodiimide and 10 mM N-hydroxysulfosuccinimide. Cortisol was detected in phosphate buffered saline (simulated tear fluid) using a simple ferrocyanide reagent with a lower limit of detection of 18.73 pM and less than 10% relative standard deviation.
    Type: Application
    Filed: August 16, 2019
    Publication date: December 5, 2019
    Inventors: Jeffrey LaBelle, Tina Hakimi, Brittney Cardinell
  • Publication number: 20190330163
    Abstract: Synthesis of novel and unique PAMAM (poly-amidoamine) polymers. PAMAM polymers can be grown by systematic alternation between ethylenediamine (EDA) and methacrylate. By taking advantage of the alternating terminal ends, successive generations G1 and G0.5 were combined under acidic conditions with Pluronic P123 as a liquid-crystal template. The resulting polymer was imaged with TEM and the product was circular and amorphous of no characteristic size ranging between about 5 nm to about 600 nm, with remarkable electrochemical activity unseen in any of the generations of PAMAM. Applications of this electroactive poly-amidoamine organic polymer include use as a new electron transfer reagent for amperometric biosensors.
    Type: Application
    Filed: June 13, 2019
    Publication date: October 31, 2019
    Applicant: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jeffrey LaBelle, Trevor Saxman, Brittney Cardinell
  • Patent number: 10386321
    Abstract: Electrochemical impedance-based label-free and rapid biosensor for select bodily fluid biomolecule levels. Monoclonal antibodies to of biomolecule such as Cortisol were covalently attached to a 16-mercaptohexadecanoic acid functionalized gold working electrode using zero-length crosslinkers N-(3-dimethylaminopropyl)-N-ethylcarbodiimide and 10 mM N-hydroxysulfosuccinimide. Cortisol was detected in phosphate buffered saline (simulated tear fluid) using a simple ferrocyanide reagent with a lower limit of detection of 18.73 pM and less than 10% relative standard deviation.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: August 20, 2019
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jeffrey LaBelle, Tina Hakimi, Brittney Cardinell
  • Publication number: 20170234894
    Abstract: Electrochemical impedance-based label-free and rapid biosensor for select bodily fluid biomolecule levels. Monoclonal antibodies to of biomolecule such as Cortisol were covalently attached to a 16-mercaptohexadecanoic acid functionalized gold working electrode using zero-length crosslinkers N-(3-dimethylaminopropyl)-N-ethylcarbodiimide and 10 mM N-hydroxysulfosuccinimide. Cortisol was detected in phosphate buffered saline (simulated tear fluid) using a simple ferrocyanide reagent with a lower limit of detection of 18.73 pM and less than 10% relative standard deviation.
    Type: Application
    Filed: July 27, 2015
    Publication date: August 17, 2017
    Applicant: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Jeffrey LaBelle, Tina Hakimi, Brittney Cardinell