Patents by Inventor Broc William TenHouten

Broc William TenHouten has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240139994
    Abstract: Some embodiments of the present disclosure relate to an additively manufactured transport structure. The transport structure includes cavities into which components that use an external interface are inserted. A plurality of components are assembled and integrated into the vehicle. In an embodiment, the components and frame are modular, enabling reparability and replacement of single parts in the event of isolated failures.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 2, 2024
    Inventors: Kevin Robert Czinger, Broc William Tenhouten, Stuart Paul Macey, David Charles O'Connell, Jon Paul Gunner, Antonio Bernerd Martinez, Narender Shankar Lakshman
  • Patent number: 11897163
    Abstract: Some embodiments of the present disclosure relate to an additively manufactured transport structure. The transport structure includes cavities into which components that use an external interface are inserted. A plurality of components are assembled and integrated into the vehicle. In an embodiment, the components and frame are modular, enabling reparability and replacement of single parts in the event of isolated failures.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: February 13, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Kevin Robert Czinger, Broc William TenHouten, Stuart Paul Macey, David Charles O'Connell, Jon Paul Gunner, Antonio Bernerd Martinez, Narender Shankar Lakshman
  • Patent number: 11884025
    Abstract: A three-dimensional (3-D) printer and technique for integrating additive and non-print manufacturing operations is disclosed. In an aspect, the 3-D printer includes an energy source and a powder bed regions for selectively fusing layers of a build piece. The 3-D printer further includes a robotic arm. The 3-D printing is interrupted responsive to instructions from a controller, upon which the robotic arm may perform one or more non-printing operations using the build piece such as milling, casting, molding, pressing, and the like. Following the non-printing operations, the 3-D printing operation continues, and a resulting assembly including the build piece is produced.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: January 30, 2024
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: John Russell Bucknell, Broc William TenHouten, Eahab Nagi El Naga
  • Patent number: 11786971
    Abstract: A high precision Interface Node is disclosed. The Interface Node includes an integrated structure including one or more complex or sophisticated features and functions. The Interface Node may connect with another component or a Linking Node. The Interface Node is manufactured to achieve high precision functionality while enabling volume production. Current additive manufacturing technologies allow for the printing of high precision features to be manufactured, but generally this is performed at a slower rate. Consequently, in one aspect, the size of the Interface Nodes is reduced in order to overcome at least part of the slower production volume caused by creating the high precision Interface Nodes. The components and Linking Nodes to which the Interface Node is connected may only have basic features and functions. Accordingly, this latter category of components may use a high print rate and thus high production volume.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: October 17, 2023
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Kevin Robert Czinger, Broc William TenHouten, Antonio Bernerd Martinez, Steven Blair Massey, Jr., Narender Shankar Lakshman, William David Kreig, Jon Paul Gunner, David Brian TenHouten, Eahab Nagi El Naga, Muhammad Faizan Zafar
  • Patent number: 11773956
    Abstract: Techniques for joining nodes and subcomponents are presented herein. An additively manufactured first node or subcomponent has a groove. An additively manufactured second node or subcomponent has a tongue configured to extend into and mate with the groove to form a tongue-and-groove connection between the first and second node or subcomponent. In some aspects, the tongue-groove connection may extend substantially around a periphery of the node or subcomponent. In other aspects, a first subcomponent having a fluid pipe interface may be coupled via a tongue-groove connection to a second subcomponent having a fluid pipe interface, thereby enabling fluid to flow between subcomponents of the resulting integrated component.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: October 3, 2023
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Antonio Bernerd Martinez, Eahab Nagi El Naga, David Brian TenHouten, John Russell Bucknell, Broc William TenHouten, Chukwubuikem Mercel Okoli, Thomas Samuel Bowden, Jr., Muhammad Faizan Zafar
  • Patent number: 11754107
    Abstract: A node to panel interface structure for use in a transport structure such as a vehicle is disclosed. In an aspect, the node includes a base, first and second sides protruding from the base to form a recess for receiving a panel, ports for adhesive injection and/or vacuum generation, one or more adhesive regions disposed on a surface of each side adjacent the panel, and at least one channel coupled between the first and second ports and configured to fill the adhesive regions with an adhesive, the adhesive being cured to form a node-panel interface. The node may be additively manufactured. In an exemplary embodiment, the node may use sealant features for including sealants that border and define the adhesive regions, and that may hermetically seal the region before and after adhesive injection. In another embodiment, the node may include isolation features for including isolators for inhibiting galvanic corrosion.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: September 12, 2023
    Assignee: DIVERGENT TECHNOLOGIES INC.
    Inventors: William David Kreig, Chukwubuikem Marcel Okoli, David Brian TenHouten, Antonio Bernerd Martinez, Kevin Robert Czinger, Broc William TenHouten
  • Patent number: 11673316
    Abstract: Apparatus and methods for additive manufacturing with variable extruder profiles are described herein. An extruder print head with multiple nozzles placed at different angles allows for additional degrees of freedom to additively manufacture parts with complex shapes. In addition with the use of shape memory alloy materials, the diameter of one or more nozzles can be adjusted during the additive manufacturing process. This allows for independent control of the build resolution and of the build rate.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: June 13, 2023
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Narender Shankar Lakshman, Broc William TenHouten
  • Publication number: 20230080324
    Abstract: One aspect is an apparatus including a plurality of additively manufactured components each having an adhesive injection channel. The components are connected together such that adhesive injection channels are aligned to form an adhesive path that allows adhesive flow between the components. Another aspect is an apparatus, including an additively manufactured component having an adhesive injection channel and an adhesive flow mechanism comprising at least one of an adhesive side end effector or a vacuum side end effector, the adhesive flow mechanism configured to provide adhesive to the adhesive injection channels.
    Type: Application
    Filed: November 22, 2022
    Publication date: March 16, 2023
    Inventors: Kevin Robert CZINGER, Antonio Bernerd MARTINEZ, Broc William TENHOUTEN, Chukwubuikem Marcel OKOLI, Eli ROGERS
  • Patent number: 11584094
    Abstract: Techniques for inlaying a composite material within a tooling shell are disclosed. In one aspect, an additively manufactured tooling shell is provided, into which a composite material is inlaid and cured. A surface of the tooling shell is provided with indentations or another mechanism to enable adherence between the composite material and the tooling shell. The resulting integrated structure is used as a component in a transport structure.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: February 21, 2023
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Richard Winston Hoyle, Broc William TenHouten, Narender Shankar Lakshman
  • Patent number: 11534828
    Abstract: One aspect is an apparatus including a plurality of additively manufactured components each having an adhesive injection channel. The components are connected together such that adhesive injection channels are aligned to form an adhesive path that allows adhesive flow between the components. Another aspect is an apparatus, including an additively manufactured component having an adhesive injection channel and an adhesive flow mechanism comprising at least one of an adhesive side end effector or a vacuum side end effector, the adhesive flow mechanism configured to provide adhesive to the adhesive injection channels.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: December 27, 2022
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Kevin Robert Czinger, Antonio Bernerd Martinez, Broc William TenHouten, Chukwubuikem Marcel Okoli, Eli Rogers
  • Publication number: 20220355569
    Abstract: The disclosure relates to additively manufactured (AM) composite structures such as panels for use in transport structures or other mechanized assemblies. An AM core may be optimized for an intended application of a panel. In various embodiments, one or more values such as strength, stiffness, density, energy absorption, ductility, etc. may be optimized in a single AM core to vary across the AM core in one or more directions for supporting expected load conditions. In an embodiment, the expected load conditions may include forces applied to the AM core or corresponding panel from different directions in up to three dimensions. Where the structure is a panel, face sheets may be affixed to respective sides of the core. The AM core may be a custom honeycomb structure. In other embodiments, the face sheets may have custom 3-D profiles formed traditionally or through additive manufacturing to enable structural panels with complex profiles.
    Type: Application
    Filed: January 24, 2022
    Publication date: November 10, 2022
    Inventors: Broc William TENHOUTEN, Thomas Samuel Bowden, JR., Jon Paul Gunner
  • Publication number: 20220339875
    Abstract: Techniques for flexible, on-site additive manufacturing of components or portions thereof for transport structures are disclosed. An automated assembly system for a transport structure may include a plurality of automated constructors to assemble the transport structure. In one aspect, the assembly system may span the full vertically integrated production process, from powder production to recycling. At least some of the automated constructors are able to move in an automated fashion between the station under the guidance of a control system. A first of the automated constructors may include a 3-D printer to print at least a portion of a component and to transfer the component to a second one of the automated constructors for installation during the assembly of the transport structure. The automated constructors may also be adapted to perform a variety of different tasks utilizing sensors for enabling machine-learning.
    Type: Application
    Filed: May 13, 2022
    Publication date: October 27, 2022
    Inventors: Kevin Robert CZINGER, Broc William TenHouten, David Charles O'Connell, Jon Paul Gunner, John Russell Bucknell, Alex James Hamade, David Brian TenHouten
  • Patent number: 11479015
    Abstract: Techniques for providing custom formed panels for transport structures including vehicles and aircraft are disclosed. In one aspect of the disclosure, a panel for a transport structure includes a first face sheet, a second face sheet arranged opposite the first face sheet, the second face sheet comprising a different geometrical profile than the first face sheet to define a space between the first and second face sheets having a variable thickness, a core configured to occupy the space. In another aspect, a node can be additively manufactured to form the custom panels by engaging opposing face sheets. The node has an inlet port for providing a foam-like substance into the space between the face sheets to thereafter solidify into a core.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: October 25, 2022
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Broc William TenHouten, Narender Shankar Lakshman
  • Patent number: 11433557
    Abstract: A buffer block apparatus for securing a node may be described. The buffer block apparatus may include a first surface having disposed thereon at least one first zero-point feature configured for a first zero-point interface with a robotic assembly apparatus; and a second surface, different from the first surface, configured to connect with a first surface of a node and form a first rigid connection between the buffer block apparatus and the node, wherein the buffer block apparatus provides at least one reference coordinate system with respect to the node.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: September 6, 2022
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Eahab Nagi El Naga, Keith Allen Fleming, Matthew Cooper Keller, Lukas Philip Czinger, Chukwubuikem Marcel Okoli, Michael Thomas Kenworthy, Matthew Coleman Tindall, Justin David Almeleh, Matthew Michael O'Brien, Broc William TenHouten, Oussama Rawas, Juan Cuauhtemoc Munoz, Muhammad Faizan Zafar, Jamison Van Bruch, Thomas Samuel Bowden, Jr., Alex James Hamade
  • Patent number: 11420262
    Abstract: Systems and methods for co-casting of additively manufactured, high precision Interface Nodes are disclosed. The Interface Node includes an integrated structure including one or more complex or sophisticated features and functions. Co-casting of Interface Nodes by casting a part onto the Interface Node results in a hybrid structure comprising the cast part and the additively manufactured Interface Node. The interface node may include at least one of a node-to-tube connection, node-to-panel connection, or a node-to-extrusion connection. In an embodiment, engineered surfaces may be provided on the Interface Node to improve the blend between the Interface Node and the cast part during the co-casting process.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: August 23, 2022
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Narender Shankar Lakshman, Broc William TenHouten, Kevin Robert Czinger, Antonio Bernerd Martinez, Jon Paul Gunner, Muhammad Faizan Zafar
  • Publication number: 20220194488
    Abstract: An additively manufactured node is disclosed. A node is an additively manufactured (AM) structure that includes a feature, e.g., a socket, a channel, etc., for accepting another structure, e.g., a tube, a panel, etc. The node can include a node surface of a receptacle extending into the node. The receptacle can receive a structure, and a seal interface on the node surface can seat a seal member between the node surface and the structure to create an adhesive region between the node and the structure, the adhesive region being bounded by the node surface, the structure, and the seal member. The node can also include two channels connecting an exterior surface of the node to the adhesive region. In this way, adhesive can be injected into the adhesive region between the node and the structure, and the adhesive can be contained by the seal member.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 23, 2022
    Inventors: Chukwubuikem Marcel OKOLI, David Brian Tenhouten, Antonio Bernerd Martinez, Muhammad Faizan Zafar, William David Kreig, Kevin Robert Czinger, Broc William Tenhouten
  • Patent number: 11358337
    Abstract: Techniques for flexible, on-site additive manufacturing of components or portions thereof for transport structures are disclosed. An automated assembly system for a transport structure may include a plurality of automated constructors to assemble the transport structure. In one aspect, the assembly system may span the full vertically integrated production process, from powder production to recycling. At least some of the automated constructors are able to move in an automated fashion between the station under the guidance of a control system. A first of the automated constructors may include a 3-D printer to print at least a portion of a component and to transfer the component to a second one of the automated constructors for installation during the assembly of the transport structure. The automated constructors may also be adapted to perform a variety of different tasks utilizing sensors for enabling machine-learning.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: June 14, 2022
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Kevin Robert Czinger, Broc William TenHouten, David Charles O'Connell, Jon Paul Gunner, John Russell Bucknell, Alex James Hamade, David Brian TenHouten
  • Publication number: 20220176450
    Abstract: Techniques for optimizing powder hole removal are disclosed. In one aspect, an apparatus for inserting powder removal features may identify what powder removal features are optimal for a given AM component, as well as the optimal location and physical characteristics of these features. The features are automatedly added to the component, and an FEA test is run. In the event of failure, the offending feature is removed and the process is repeated. If successful then the loose powder may be removed in a post-processing step following AM.
    Type: Application
    Filed: February 25, 2022
    Publication date: June 9, 2022
    Inventors: Narender Shankar Lakshman, Thomas Samuel BOWDEN, JR., John Russell BUCKNELL, Ross Harrison BYERS, Broc William TenHOUTEN, Antonio Bernerd MARTINEZ, Muhammad Faizan ZAFAR, Richard Winston HOYLE, Chukwubuikem Marcel OKOLI
  • Patent number: 11292058
    Abstract: Techniques for optimizing powder hole removal are disclosed. In one aspect, an apparatus for inserting powder removal features may identify what powder removal features are optimal for a given AM component, as well as the optimal location and physical characteristics of these features. The features are automatedly added to the component, and an FEA test is run. In the event of failure, the offending feature is removed and the process is repeated. If successful then the loose powder may be removed in a post-processing step following AM.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: April 5, 2022
    Assignee: DIVERGENT TECHNOLOGIES, INC.
    Inventors: Narender Shankar Lakshman, Thomas Samuel Bowden, Jr., John Russell Bucknell, Ross Harrison Byers, Broc William TenHouten, Antonio Bernerd Martinez, Muhammad Faizan Zafar, Richard Winston Hoyle, Chukwubuikem Marcel Okoli
  • Patent number: D983090
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: April 11, 2023
    Assignee: CZV, INC.
    Inventors: Hyuk Woo Jung, David Charles O'Connell, Cheng Wei Yu, Kevin Robert Czinger, Broc William Tenhouten