Patents by Inventor Brookhaven Science Associates, LLC

Brookhaven Science Associates, LLC has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130316250
    Abstract: The present invention relates to novel compositions, electrodes, electrochemical storage devices (batteries) and ionic conduction devices that use cubic ionic conductor (“CUBICON”) compounds, preferably nitridophosphate compounds. The cubic ionic conductor compound have a framework formula [MT3X10]n- (1) and a general formula AxMT3X10 (2), where M is a cation in octahedral coordination, T is a cation in tetrahedral coordination, X is an anion, and the framework has a net negative charge of ?n, where a variable number of potentially mobile additional chemical species, A, can fit into the open space within this framework with a net charge of +n.
    Type: Application
    Filed: April 30, 2013
    Publication date: November 28, 2013
    Applicant: Brookhaven Science Associates, LLC
    Inventor: Brookhaven Science Associates, LLC
  • Publication number: 20130293987
    Abstract: A quench detection device (or method) is provided that receives real-time information of concurrently monitored electrical characteristics of a high temperature superconducting (HTS) device, or any superconducting material, device, or system including low temperature superconductors, during operation. The quench detection device determines whether an electrical threshold is satisfied based on the received real-time information. The quench detection device detects a quench condition if the electrical threshold remains satisfied over a predetermined period of time or a predetermined successive number of times. If a quench detection is detected, the quench detection device sends a signal to terminate the operation of the HTS device.
    Type: Application
    Filed: March 26, 2013
    Publication date: November 7, 2013
    Applicant: Brookhaven Science Associates, LLC
    Inventor: Brookhaven Science Associates, LLC
  • Publication number: 20130225831
    Abstract: Radiotracer vorozole compounds for in vivo and in vitro assaying, studying and imaging cytochrome P450 aromatase enzymes in humans, animals, and tissues and methods for making and using the same are provided. [N-radio-methyl] vorozole substantially separated from an N-3 radio-methyl isomer of vorozole is provided. Separation is accomplished through use of chromatography resins providing multiple mechanisms of selectivity.
    Type: Application
    Filed: March 19, 2013
    Publication date: August 29, 2013
    Applicant: Brookhaven Science Associates, LLC
    Inventor: Brookhaven Science Associates, LLC
  • Publication number: 20130177715
    Abstract: High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The manufacturing process may involve initial oxidation of the carbon nanostructures followed by immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means and the nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. Subsequent film growth may be performed via the initial quasi-underpotential deposition of a non-noble metal followed by immersion in a solution comprising a more noble metal.
    Type: Application
    Filed: February 25, 2013
    Publication date: July 11, 2013
    Applicant: Brookhaven Science Associates, LLC
    Inventor: Brookhaven Science Associates, LLC
  • Publication number: 20130178357
    Abstract: A method of synthesizing activated electrocatalyst, preferably having a morphology of a nanostructure, is disclosed. The method includes safely and efficiently removing surfactants and capping agents from the surface of the metal structures. With regard to metal nanoparticles, the method includes synthesis of nanoparticle(s) in polar or non-polar solution with surfactants or capping agents and subsequent activation by CO-adsorption-induced surfactant/capping agent desorption and electrochemical oxidation. The method produces activated macroparticle or nanoparticle electrocatalysts without damaging the surface of the electrocatalyst that includes breaking, increasing particle thickness or increasing the number of low coordination sites.
    Type: Application
    Filed: January 7, 2013
    Publication date: July 11, 2013
    Applicant: Brookhaven Science Associates, LLC
    Inventor: Brookhaven Science Associates, LLC
  • Publication number: 20130157133
    Abstract: A method of synthesizing defect-free phospho-olivine materials is disclosed. The method is based on direct hydrothermal synthesis of phospho-olivine compound(s) and subsequent lattice reordering at or near the transition temperature to eliminate lattice defects or on one-pot in situ hydrothermal synthesis of phospho-olivine compound(s), where the cation ordering occurs during dwell time after rapid synthesis to eliminate lattice defects. The disclosed methods produce defect-free phospho-olivine compound(s) having a crystal lattice with a Pnma space group. In order to determine the exact transition temperature for complete removal of single- or mixed-transition metals from lithium sites or to monitor the crystal growth and removal of single- or mixed-transition metals from lithium sites during the hydrothermal synthesis, the method encompasses a procedure for determining and monitoring defects in the phospho-olivine phases using X-ray diffraction.
    Type: Application
    Filed: November 14, 2012
    Publication date: June 20, 2013
    Applicant: Brookhaven Science Associates, LLC
    Inventor: Brookhaven Science Associates, LLC
  • Publication number: 20130146843
    Abstract: Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au—Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.
    Type: Application
    Filed: February 1, 2013
    Publication date: June 13, 2013
    Applicant: Brookhaven Science Associates, LLC
    Inventor: Brookhaven Science Associates, LLC
  • Publication number: 20130045328
    Abstract: High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage.
    Type: Application
    Filed: October 11, 2012
    Publication date: February 21, 2013
    Applicant: Brookhaven Science Associates, LLC
    Inventor: Brookhaven Science Associates, LLC
  • Publication number: 20130034803
    Abstract: Elongated noble-metal nanoparticles and methods for their manufacture are disclosed. The method involves the formation of a plurality of elongated noble-metal nanoparticles by electrochemical deposition of the noble metal on a high surface area carbon support, such as carbon nanoparticles. Prior to electrochemical deposition, the carbon support may be functionalized by oxidation, thus making the manufacturing process simple and cost-effective. The generated elongated nanoparticles are covalently bound to the carbon support and can be used directly in electrocatalysis. The process provides elongated noble-metal nanoparticles with high catalytic activities and improved durability in combination with high catalyst utilization since the nanoparticles are deposited and covalently bound to the carbon support in their final position and will not change in forming an electrode assembly.
    Type: Application
    Filed: September 21, 2012
    Publication date: February 7, 2013
    Applicant: Brookhaven Science Associates, LLC/Brookhaven National Laboratory
    Inventor: Brookhaven Science Associates, LLC/Brookhaven