Patents by Inventor Brooks Edwards

Brooks Edwards has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060257863
    Abstract: A chemiluminescent system for detecting the presence of influenza virus in a biological fluid sample is provided. An influenza diagnostic kit is provided which includes (1) a sampling device for obtaining the biological fluid from a subject, (2) a chemiluminescent substrate material which, in the presence of influenza virus in the biological sample, will generate a chemiluminescent product that will produce detectable light, and (3) a means for detecting any generated light. A liquid sample containing the biological fluid, and preferably a diluent, are contacted with the an absorbent material containing the chemiluminescent substrate material. The substrate responds to neuraminidase activity intrinsic to influenza A and influenza B virus particles, such that when the substrate is in contact with influenza virus, the substrate is cleaved to yield a chemiluminescent product that then decomposes to produce light which can then be detected.
    Type: Application
    Filed: July 24, 2006
    Publication date: November 16, 2006
  • Publication number: 20060216768
    Abstract: Assemblies comprising nanoparticles and chemiluminescent substrates such as dioxetanes are provided. The assemblies can be used in assays to detect the presence and/or amount of a single analyte or multiple analytes in a sample. Methods of making the assemblies are also described.
    Type: Application
    Filed: September 9, 2005
    Publication date: September 28, 2006
  • Patent number: 7112413
    Abstract: Chemiluminescent heteroaryl substituted benzothiazole 1,2-dioxetane compounds capable of producing light energy when decomposed are provided. These chemiluminescent compounds are represented by the general formula: The heteroaryl substituent Y can be, for example, a pyridyl group or a benzothiazolyl group. The heteroaryl substituted benzothiazole compounds are substantially stable at room temperature. Kits including the heteroaryl substituted dioxetane compounds as well as methods for using these compounds for detecting the presence of one or more analytes in a sample are also provided.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: September 26, 2006
  • Patent number: 7081352
    Abstract: A chemiluminescent system for detecting the presence of influenza virus in a biological fluid sample is provided. An influenza diagnostic kit is provided which includes (1) a sampling device for obtaining the biological fluid from a subject, (2) a chemiluminescent substrate material which, in the presence of influenza virus in the biological sample, will generate a chemiluminescent product that will produce detectable light, and (3) a means for detecting any generated light. A liquid sample containing the biological fluid, and preferably a diluent, are contacted with the an absorbent material containing the chemiluminescent substrate material. The substrate responds to neuraminidase activity intrinsic to influenza A and influenza B virus particles, such that when the substrate is in contact with influenza virus, the substrate is cleaved to yield a chemiluminescent product that then decomposes to produce light which can then be detected.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: July 25, 2006
  • Patent number: 7053208
    Abstract: Probes labeled with 1,2-dioxetane precursors can be employed in a variety of assays. The probes may be nucleic acid, peptide nucleic acid, proteins including enzyme, antibody or antigen, steroid, carbohydrate, drug or non-drug hapten. The probe is provided with a 1,2-dioxetane precursor bound thereto, generally either covalently, or a strong ligand bond. The dioxetane precursor moiety is converted to a bound 1,2-dioxetane by exposure to singlet oxygen. These dioxetane (labels) either spontaneously decompose, or are induced to decompose by an appropriate trigger to release light. The trigger may be a change in pH temperature, or an agent which removes a protective group. Assay formats in which these 1,2-dioxetane labeled probes and referents may be used to include hybridization assays, immuno assays, gel-based assays and Capillary Zone Electrophoresis.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: May 30, 2006
  • Publication number: 20060079699
    Abstract: Methods for synthesizing 1,2-dioxetane compounds and intermediate compounds useful in the synthesis of these dioxetane compounds are described. The methods and intermediates allow for the efficient production of dioxetane substrates having electron withdrawing groups via a Homer Emmons coupling route.
    Type: Application
    Filed: August 25, 2005
    Publication date: April 13, 2006
  • Publication number: 20060024762
    Abstract: Chemiluminescent heteroaryl substituted benzothiazole 1,2-dioxetane compounds capable of producing light energy when decomposed are provided. These chemiluminescent compounds are represented by the general formula: The heteroaryl substituent Y can be, for example, a pyridyl group or a benzothiazolyl group. The heteroaryl substituted benzothiazole compounds are substantially stable at room temperature. Kits including the heteroaryl substituted dioxetane compounds as well as methods for using these compounds for detecting the presence of one or more analytes in a sample are also provided.
    Type: Application
    Filed: September 20, 2005
    Publication date: February 2, 2006
  • Publication number: 20050165222
    Abstract: Disclosed are methods and compositions that may be used for purifying antibodies.
    Type: Application
    Filed: October 15, 2004
    Publication date: July 28, 2005
  • Patent number: 6852548
    Abstract: Chemiluminescent 1,2-dioxetane compounds capable of producing light energy when decomposed, substantially stable at room temperature, represented by the formulas I or II: wherein T is:
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: February 8, 2005
  • Publication number: 20050026151
    Abstract: A chemiluminescent assay to determine the presence and/or amount of one or more labeled target molecules in a sample is described in which the surface layer of a solid support is contacted with a composition comprising first and second chemiluminescent substrates capable of being activated by first and second enzymes, respectively. A plurality of probes are disposed on the surface layer in discrete areas. At least some of the probes are bound to a first enzyme conjugate comprising the first enzyme and at least some of the probes are bound to a second enzyme conjugate comprising the second enzyme. The resulting chemiluminescent signals are then detected. The method can be used to compare two biological samples (e.g., mRNA populations from different cells) on the same support surface or to provide a chemiluminescent control signal for normalizing chemiluminescent assay data from a biological sample.
    Type: Application
    Filed: July 17, 2003
    Publication date: February 3, 2005
  • Publication number: 20050019778
    Abstract: Chemiluminescent assays to determine the presence and/or amount of one or more labeled analytes in a sample are described wherein a solid support is contacted sequentially with first and second chemiluminescent substrates each of which are capable of being activated by an enzyme and the resulting chemiluminescent signals are detected. A plurality of probes are disposed on a surface layer of the solid support in a plurality of discrete areas. Some of the probes are bound to a conjugate of the first enzyme and some of the probes are bound to a conjugate of the second enzyme. The assay can be used to compare biological samples (e.g., mRNA populations from different cells) on the same support surface. Alternatively, one of the chemiluminescent signals generated can be used as a control signal for normalizing the chemiluminescent assay data.
    Type: Application
    Filed: July 17, 2003
    Publication date: January 27, 2005
  • Publication number: 20040259182
    Abstract: Arrays modified with chemiluminescent enhancing materials and methods of detecting chemiluminescent emissions on solid supports in the presence of chemiluminescent enhancing materials are described. The arrays include a solid support having a surface layer, a plurality of probes disposed on the surface layer in discrete regions and a chemiluminescent enhancing material. The array may be a high density array. At least some of the probes can be bound either directly or indirectly to an enzyme conjugate comprising an enzyme capable of activating a chemiluminescent substrate. The surface layer can be contacted with a composition comprising the chemiluminescent substrate in the presence of the chemiluminescent enhancing material and the resulting chemiluminescent emissions can be detected. The probes can be polynucleotide or polypeptide probes.
    Type: Application
    Filed: June 17, 2003
    Publication date: December 23, 2004
  • Publication number: 20040086849
    Abstract: A chemiluminescent system for detecting the presence of influenza virus in a biological fluid sample is provided. An influenza diagnostic kit is provided which includes (1) a sampling device for obtaining the biological fluid from a subject, (2) a chemiluminescent substrate material which, in the presence of influenza virus in the biological sample, will generate a chemiluminescent product that will produce detectable light, and (3) a means for detecting any generated light. A liquid sample containing the biological fluid, and preferably a diluent, are contacted with the an absorbent material containing the chemiluminescent substrate material. The substrate responds to neuraminidase activity intrinsic to influenza A and influenza B virus particles, such that when the substrate is in contact with influenza virus, the substrate is cleaved to yield a chemiluminescent product that then decomposes to produce light which can then be detected.
    Type: Application
    Filed: October 22, 2003
    Publication date: May 6, 2004
  • Publication number: 20040072252
    Abstract: Chemiluminescent heteroaryl substituted benzothiazole 1,2-dioxetane compounds capable of producing light energy when decomposed are provided.
    Type: Application
    Filed: October 7, 2003
    Publication date: April 15, 2004
  • Patent number: 6660529
    Abstract: Chemiluminescent heteroaryl substituted benzothiazole 1,2-dioxetane compounds capable of producing light energy when decomposed are provided. These chemiluminescent compounds are represented by the general formula: The heteroaryl substituent Y can be, for example, a pyridyl group or a benzothiazolyl group. The heteroaryl substituted benzothiazole compounds are substantially stable at room temperature. Kits including the heteroaryl substituted dioxetane compounds as well as methods for using these compounds for detecting the presence of one or more analytes in a sample are also provided.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: December 9, 2003
  • Publication number: 20030134286
    Abstract: Solid supports for chemiluminescent assays are provided. The solid support includes a plurality of probes covalently or physically attached to the support surface and a chemiluminescent enhancing moiety incorporated onto the surface or into the bulk of the support. The solid support can be a multi-layered support including an upper probe binding layer (e.g., an azlactone polymer layer or porous functional polyamide layer) adjacent to a cationic microgel layer. The azlactone-functional polymer can be a copolymer of dimethylacrylamide and vinylazlactone crosslinked with ethylenediamine. The cationic microgel layer can be a cross-linked quaternary onium salt containing polymer. A method and a kit for conducting chemiluminescent assays using the solid supports is also provided. The kit comprises a dioxetane substrate, a biopolymer probe-enzyme complex, and a solid support.
    Type: Application
    Filed: January 17, 2002
    Publication date: July 17, 2003
  • Patent number: 6555698
    Abstract: The present invention discloses chemiluminescent 1,2-dioxetane substrates capable of reacting with a neuraminidase to release optically detectable energy. These 1,2-dioxetanes have the general formula: wherein Z is and the variables are selected so as to induce decomposition of said dioxetane accompanied by chemiluminescence where Z is cleaved by neuraminidase present.
    Type: Grant
    Filed: November 16, 1999
    Date of Patent: April 29, 2003
  • Patent number: 6451531
    Abstract: Probes labeled with 1,2-dioxetane precursors can be employed in a variety of assays. The probes may be nucleic acid, peptide nucleic acid, proteins including enzyme, antibody or antigen, steroid, carbohydrate, drug or non-drug hapten. The probe is provided with a 1,2-dioxetane precursor bound thereto, generally either covalently, or a strong ligand bond. The dioxetane precursor moiety is converted to a bound 1,2-dioxetane by exposure to singlet oxygen. These dioxetane (labels) either spontaneously decompose, or are induced to decompose by an appropriate trigger to release light. The trigger may be a change in pH temperature, or an agent which removes a protective group. Assay formats in which these 1,2-dioxetane labeled probes and referents may be used to include hybridization assays, immuno assays, gel-based assays and Capillary Zone Electrophoresis.
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: September 17, 2002
  • Publication number: 20020106687
    Abstract: Probes labeled with 1,2-dioxetane precursors can be employed in a variety of assays. The probes may be nucleic acid, peptide nucleic acid, proteins including enzyme, antibody or antigen, steroid, carbohydrate, drug or non-drug hapten. The probe is provided with a 1,2-dioxetane precursor bound thereto, generally either covalently, or a strong ligand bond. The dioxetane precursor moiety is converted to a bound 1,2-dioxetane by exposure to singlet oxygen. These dioxetane (labels) either spontaneously decompose, or are induced to decompose by an appropriate trigger to release light. The trigger may be a change in pH temperature, or an agent which removes a protective group. Assay formats in which these 1,2-dioxetane labeled probes and referents may be used to include hybridization assays, immuno assays, gel-based assays and Capillary Zone Electrophoresis.
    Type: Application
    Filed: February 27, 2002
    Publication date: August 8, 2002
  • Patent number: 6417380
    Abstract: Compounds having the formula: wherein T is a polycycloalkylidene group (e.g., adamant-2-ylidene); R is a C1-20 alkyl, aralkyl or cycloalkyl group; and Y is a fluorescent chromophore (e.g., m-phenylene), produced by reacting a compound having the formula: with an R-ylating agent (e.g., R2 SO4) in the presence of an alkali metal alkoxide in a polar aprotic solvent. Also, compounds having the formula: are produced by reacting a compound having the formula: with wherein X is an electronegative leaving group (e.g., a halogen anion such as chloride ion) in the presence of a Lewis base (e.g., a trialkyl-amine) dissolved in an aprotic organic solvent (e.g., benzene or toluene). Also, compounds having the formula are produced by reacting a compound of the formula with a tetra-O-acylated-O-hexopyranoside halide, then hydrolyzing off the protective acyl groups.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: July 9, 2002