Patents by Inventor Bruce A.C. Douglas

Bruce A.C. Douglas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220030452
    Abstract: Methods and system to determine the health of wireless mesh networks are provided. Each radio node of a wireless mesh network transmits Link Quantification Messages (LQMs) interPAN at maximum power to enable adjacent nodes to determine the Received Signal Strength Indication (RSSI) on the wireless link to that radio node. Each radio node also transmits LQMs at successively lower power levels. The adjacent nodes detect a power level at measurable packet error rate to determine a noise floor for the wireless link. An aggregator collects link quantification information from the radio nodes and forms an intercommunication matrix for the wireless network. The RSSI and power level at measurable packet error rate information is used to remove unreliable links from the intercommunication matrix. Nodes are ranked and the reliability and dependability of the nodes is calculated to show the network health.
    Type: Application
    Filed: October 12, 2021
    Publication date: January 27, 2022
    Inventors: Bruce A.C. Douglas, Stefan Warner, David Ko
  • Publication number: 20190373494
    Abstract: Methods and system to determine the health of wireless mesh networks are provided. Each radio node of a wireless mesh network transmits Link Quantification Messages (LQMs) interPAN at maximum power to enable adjacent nodes to determine the Received Signal Strength Indication (RSSI) on the wireless link to that radio node. Each radio node also transmits LQMs at successively lower power levels. The adjacent nodes detect a power level at measurable packet error rate to determine a noise floor for the wireless link. An aggregator collects link quantification information from the radio nodes and forms an intercommunication matrix for the wireless network. The RSSI and power level at measurable packet error rate information is used to remove unreliable links from the intercommunication matrix. Nodes are ranked and the reliability and dependability of the nodes is calculated to show the network health.
    Type: Application
    Filed: August 15, 2019
    Publication date: December 5, 2019
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Bruce A.C. Douglas, Stefan Warner, David Ko
  • Patent number: 10390241
    Abstract: Methods and system to determine the health of wireless mesh networks are provided. Each radio node of a wireless mesh network transmits Link Quantification Messages (LQMs) interPAN at maximum power to enable adjacent nodes to determine the Received Signal Strength Indication (RSSI) on the wireless link to that radio node. Each radio node also transmits LQMs at successively lower power levels. The adjacent nodes detect a power level at measurable packet error rate to determine a noise floor for the wireless link. An aggregator collects link quantification information from the radio nodes and forms an intercommunication matrix for the wireless network. The RSSI and power level at measurable packet error rate information is used to remove unreliable links from the intercommunication matrix. Nodes are ranked and the reliability and dependability of the nodes is calculated to show the network health.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: August 20, 2019
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Bruce A. C. Douglas, Stefan Warner, David Ko
  • Publication number: 20170093663
    Abstract: Methods and system to determine the health of wireless mesh networks are provided. Each radio node of a wireless mesh network transmits Link Quantification Messages (LQMs) interPAN at maximum power to enable adjacent nodes to determine the Received Signal Strength Indication (RSSI) on the wireless link to that radio node. Each radio node also transmits LQMs at successively lower power levels. The adjacent nodes detect a power level at measurable packet error rate to determine a noise floor for the wireless link. An aggregator collects link quantification information from the radio nodes and forms an intercommunication matrix for the wireless network. The RSSI and power level at measurable packet error rate information is used to remove unreliable links from the intercommunication matrix. Nodes are ranked and the reliability and dependability of the nodes is calculated to show the network health.
    Type: Application
    Filed: March 2, 2016
    Publication date: March 30, 2017
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Bruce A.C. Douglas, Stefan Warner, David Ko
  • Publication number: 20170094494
    Abstract: Active proximity based wireless network commissioning is provided. Routers and end devices are placed in a default mode before commissioning such that the devices are communicative but do not transmit join requests. A commissioning device is positioned at a selected location and transmits a wireless beacon request that is received by devices within a limited range. Routers, end devices and coordinator devices within range send response beacons. The response beacons are used by the commissioning device to discover devices and select network parameters for the discovered devices. The commissioning device uses the parameters to prompt the coordinator device to form a network and prompt the qualified device to enter a pending mode and join the network.
    Type: Application
    Filed: March 2, 2016
    Publication date: March 30, 2017
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Bruce A.C. Douglas, Stefan Warner, Greg Mihkelson