Patents by Inventor Bruce A. Knudsen

Bruce A. Knudsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6418804
    Abstract: An inspection and recording system for fluid flow testing of cooling passageways in gas turbine buckets provides readily observable visual determination of whether any blockages were formed during the manufacturing or refurbishing processes. The inspection apparatus includes a manifold block and manifold control valve mounted on a platform and adapted to engage the root end of a turbine bucket and supply liquid therethrough. The liquid exiting at the tip of the turbine bucket is visible and any blockages in the passageways will be easily discerned by the absence or paucity of liquid flow at the tip. The fluid flow test is recorded with at least one video camera to display both locally and possibly remotely the fluid flow through the article. The video images can be displayed remotely in real time over a computer network or can be stored on a suitable medium for time delayed display.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: July 16, 2002
    Assignee: General Electric Company
    Inventors: Robert J. Zabala, Bruce A. Knudsen, Ernest G. Cusick
  • Publication number: 20020073769
    Abstract: An inspection and recording system for fluid flow testing of cooling passageways in gas turbine buckets provides readily observable visual determination of whether any blockages were formed during the manufacturing or refurbishing processes. The inspection apparatus includes a manifold block and manifold control valve mounted on a platform and adapted to engage the root end of a turbine bucket and supply liquid therethrough. The liquid exiting at the tip of the turbine bucket is visible and any blockages in the passageways will be easily discerned by the absence or paucity of liquid flow at the tip. The fluid flow test is recorded with at least one video camera to display both locally and possibly remotely the fluid flow through the article. The video images can be displayed remotely in real time over a computer network or can be stored on a suitable medium for time delayed display.
    Type: Application
    Filed: December 14, 2000
    Publication date: June 20, 2002
    Inventors: Robert J. Zabala, Bruce A. Knudsen, Ernest G. Cusick
  • Patent number: 5529625
    Abstract: A coating apparatus is disclosed having a metal bath, an enclosure extending over the bath, a mandrel extending into the bath, and a gas seal mounted on the enclosure in communication with the atmosphere therein. The gas seal has a frame with a slot extending therethrough, first and second rolls aligned with the first and second ends of the slot, and a door extending between the rolls and over the seal. The door being pivotally mounted on the frame to open inwardly at the first end and outwardly at the second end.
    Type: Grant
    Filed: July 27, 1994
    Date of Patent: June 25, 1996
    Assignee: General Electric Company
    Inventors: Bruce A. Knudsen, Mark G. Benz
  • Patent number: 5522945
    Abstract: A method for making triniobium tin superconductor with improved critical current density is disclosed where an annealed niobium-base substrate is passed through a tin alloy bath containing tin, copper, and bismuth, to coat the substrate with tin and then annealing the coated substrate to form triniobium tin superconductor. A tin alloy bath containing up to twenty weight percent copper and up to one weight percent bismuth is disclosed.
    Type: Grant
    Filed: July 1, 1994
    Date of Patent: June 4, 1996
    Assignee: General Electric Company
    Inventors: Melissa L. Murray, Mark G. Benz, Bruce A. Knudsen
  • Patent number: 5513791
    Abstract: An improved method for forming fluid inflatable metal structures is taught. The improvement concerns the patterning of the portion of the structure to be inflated. Patterning is accomplished by first applying a strippable flexible mask coating and then scoring this coating so that a patterned portion may be removed therefrom. The parent portion is the portion of the sheet article to be inflated by subsequent processing. After the patterned portion has been removed, a stop-off is applied to the exposed surface of the first sheet. After the stop-off material has been applied, the remainder of the strippable mask is removed and washed with a detergent to remove the residue from the mask. The sheet having stop-off applied in the pattern to the first sheet is then superposed over a second sheet, and heat and pressure are applied to cause diffusion bonding between the exposed surfaces of the two sheets.
    Type: Grant
    Filed: March 28, 1994
    Date of Patent: May 7, 1996
    Assignee: General Electric Company
    Inventors: Raymond G. Rowe, Rebecca L. Casey, Robert J. Zabala, Bruce A. Knudsen
  • Patent number: 5515413
    Abstract: An improved high performance x-ray system, having an improved cathode cup assembly which provides reduced tube manufacturing costs and reduces failures due to filament misalignment or sagging of the filament during both the manufacturing process and during operation, is disclosed.
    Type: Grant
    Filed: September 26, 1994
    Date of Patent: May 7, 1996
    Assignee: General Electric Company
    Inventors: Bruce A. Knudsen, Clyde L. Briant
  • Patent number: 5505790
    Abstract: A method is described which increases the critical current of triniobium tin by bonding thermal contraction control layers to the triniobium tin superconducting articles at a process temperature to form a composite, and subsequently cooling the composite to a test temperature.
    Type: Grant
    Filed: September 9, 1994
    Date of Patent: April 9, 1996
    Assignee: General Electric Company
    Inventors: Mark G. Benz, Howard R. Hart, Jr., Melissa L. Murray, Robert J. Zabala, Bruce A. Knudsen, Thomas R. Raber
  • Patent number: 5498185
    Abstract: A method of making a high performance x-ray system having an improved cathode cup assembly reduces tube manufacturing costs and failures due to filament misalignment during the manufacturing process.
    Type: Grant
    Filed: September 26, 1994
    Date of Patent: March 12, 1996
    Assignee: General Electric Company
    Inventors: Bruce A. Knudsen, Clyde L. Briant
  • Patent number: 5489348
    Abstract: Methods of making an improved high performance x-ray system having an improved cathode assembly which reduces tube failure due to filament misalignment or sagging and prevents costly reflashing of the filament during the manufacturing process is disclosed.
    Type: Grant
    Filed: August 22, 1994
    Date of Patent: February 6, 1996
    Assignee: General Electric Company
    Inventors: Bruce A. Knudsen, Clyde L. Briant
  • Patent number: 5472936
    Abstract: A method for making triniobium tin foil is disclosed where the niobium-based foil with an oxide layer is passed continuously at a set speed into an enclosed chamber. The enclosed chamber has an inert atmosphere which is substantially oxygen free. Upon entering the chamber, the foil passes through a decomposition anneal furnace, a low temperature tin dip, and then a high temperature reaction anneal furnace before exiting the chamber as triniobium tin foil.
    Type: Grant
    Filed: July 5, 1994
    Date of Patent: December 5, 1995
    Assignee: General Electric Company
    Inventors: Mark G. Benz, Neil A. Johnson, Melissa L. Murray, Robert J. Zabala, Louis E. Hibbs, Jr., Bruce A. Knudsen
  • Patent number: 5460652
    Abstract: The invention is related to a continuous coating apparatus for applying molten metal on a metal sheet or tape. The apparatus has an annular cylinder having an open lower section extending to a substantially closed upper section. An axle is mounted in the lower section normal to the cylinder axis, and a spool is mounted on the axle. A pair of tubes are mounted parallel to the cylinder axis inside the cylinder on oppositely facing surfaces so that a tape extending around the spool towards the upper section extends through the tubes.
    Type: Grant
    Filed: May 27, 1994
    Date of Patent: October 24, 1995
    Assignee: General Electric Company
    Inventors: Bruce A. Knudsen, Mark G. Benz, Anthony Mantone, Christopher G. King
  • Patent number: 5239156
    Abstract: Two Nb.sub.3 Sn superconducting tapes are overlapped by an amount equal to about two times the width of the superconducting tapes. A filler material of material substantially similar to the tapes is placed between the two tapes in the overlapped region. A NdYAG laser (4) sends a 20-40 watt beam focused by a lens that heats the tapes to create a bridge of superconductivity material formed over the region where the tapes are joined.
    Type: Grant
    Filed: September 27, 1991
    Date of Patent: August 24, 1993
    Assignee: General Electric Company
    Inventors: Marshall G. Jones, Lee E. Rumaner, Mark G. Benz, Bruce A. Knudsen, Robert J. Zabala
  • Patent number: 5176742
    Abstract: An apparatus for filtering a molten solder bath comprises, a housing having an entrance end and an exit end enclosing a channel means extending from the entrance end to a filter means adjacent the exit end. The channel means being configured for receiving molten solder at the entrance end and directing the solder to the filter means in a turbulent flow. The filter means being configured to filter particles from the flow and direct the filtered flow to the exit end. A cooling means is positioned on the housing for cooling solder flowing through the channel means without reacting with the solder. A method for filtering a molten solder bath comprises, directing solder from the bath in a turbulent flow and cooling the flow to form a precipitate of an impurity in the molten solder. The cooled flow is filtered to remove particles and form a high-purity solder, and the high-purity solder is returned to the bath. Preferably, the molten solder is protected by an inert atmosphere that does not react with the solder.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: January 5, 1993
    Assignee: General Electric Company
    Inventors: Robert J. Zabala, Bruce A. Knudsen, Mark G. Benz, Lee E. Rumaner
  • Patent number: 5169128
    Abstract: An apparatus for filtering a molten solder bath comprises, a housing having an entrance end and an exit end enclosing a chanel means extending from the entrance end to a filter means adjacent the exit end. The channel means being configured for receiving molten solder at the entrance end and directing the solder to the filter means in a turbulent flow. The filter means being configured to filter particles from the flow and direct the filtered flow to the exit end. A cooling means is positioned on the housing for cooling solder flowing through the channel means without reacting with the solder. A method for filtering a molten solder bath comprises, directing solder from the bath in a turbulent flow and cooling the flow to form a precipitate of an impurity in the molten solder. The cooled flow is filtered to remove particles and form a high-purity solder, and the high-purity solder is returned to the bath. Preferably, the molten solder is protected by an inert atmosphere that does not react with the solder.
    Type: Grant
    Filed: May 8, 1992
    Date of Patent: December 8, 1992
    Assignee: General Electric Company
    Inventors: Robert J. Zabala, Bruce A. Knudsen, Mark G. Benz, Lee E. Rumaner
  • Patent number: 5156317
    Abstract: An apparatus for solder joining metal tapes to form laminated metal tapes comprises a channel means having a base, and sidewall means extending therefrom to a cover extending over the sidewall means. The sidewall means define converging channels having an entrance end for admitting the tapes spaced apart, and an exit end where facing tape surfaces can come into contact. The sidewall means separate the base and cover by a distance selected to align the tapes in the width dimension. The cover having a first section extending from the exit end, and a second section extending from the first section to the entrance end, the second section being formed with a cavity facing the channel that permits a solder flow therethrough that minimizes accumulation of particles in the channels. A solder duct means mounted on the channel means for directing molten solder into the channels to flow from the exit end to the entrance end. The solder duct means having a slot extending therethrough and aligned with the exit end.
    Type: Grant
    Filed: March 23, 1992
    Date of Patent: October 20, 1992
    Assignee: General Electric Company
    Inventors: Robert J. Zabala, Bruce A. Knudsen, Mark G. Benz
  • Patent number: 5134040
    Abstract: Superconducting tapes have an inner laminate comprised of a parent-metal layer selected from the group niobium, tantalum, technetium, and vanadium, a superconductive intermetallic compound layer on the parent-metal layer, and a reactive-metal layer that is capable of combining with the parent-metal and forming the superconductive intermetallic compound. A superconducting joint between contiguous tapes comprises, a continuous precipitate of the superconductive intermetallic compound fused to the tapes forming a continuous superconducting path between the tapes.
    Type: Grant
    Filed: July 19, 1991
    Date of Patent: July 28, 1992
    Assignee: General Electric Company
    Inventors: Mark G. Benz, Bruce A. Knudsen, Lee E. Rumaner, Robert J. Zabala
  • Patent number: 5121869
    Abstract: An apparatus for solder joining metal tapes to form laminated metal tapes comprises an alignment box having a base and a sidewall means extending therefrom to define a tapered inner channel extending through the box. The tapered channel having an entrance end and narrowing to an exit end. At least one tapered wall extending from the base and within the inner channel to define subchannels that are spaced at the entrance end and converge into the inner channel before the exit end. The sidewall means and tapered wall extending from the base to respective wall tops, and a cover extending over the channel and subchannels is mounted on the wall tops. The base, sidewalls, inner wall, and cover being configured to form the channel and subchannels to have a first preselected distance between the base and cover that is greater than the width of the tapes.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: June 16, 1992
    Assignee: General Electric Company
    Inventors: Bruce A. Knudsen, Robert J. Zabala, Mark G. Benz, Lee E. Rumaner, Neil A. Johnson
  • Patent number: 5109593
    Abstract: Superconducting tapes having an inner laminate comprised of a parent-metal layer, a superconductive alloy layer on the parent-metal, a reactive-metal layer, and an outer laminate soldered thereon are joined in a superconducting joint by the method of this invention. The outer laminate is removed to form exposed sections, and the tapes are positioned so that the exposed sections are in contact. A melt zone within the exposed sections where the exposed sections are in contact is melted. The melt zone is at least large enough to provide sufficient parent-metal, superconductive alloy, and reactive-metal to form a melt that resolidifies as a continuous precipitate of the superconductive alloy. The melt resolidifies as a continuous precipitate of the superconductive alloy that is continuous with the superconductive alloy on the superconducting tape.
    Type: Grant
    Filed: August 1, 1990
    Date of Patent: May 5, 1992
    Assignee: General Electric Company
    Inventors: Mark G. Benz, Bruce A. Knudsen, Lee E. Rumaner, Robert J. Zabala
  • Patent number: 5082164
    Abstract: Superconducting tapes having an inner laminate comprised of a parent-metal layer, a superconductive alloy layer on the parent-metal, a reactive-metal layer, and an outer laminate soldered thereon are joined in a superconducting joint by the method of this invention. The outer laminate, reactive-metal layer, and superconductive alloy layer are removed to form exposed sections of the parent metal layer. The tapes are positioned so that the exposed sections are in contact. Metallurgical bonding, for example by spot welding, forms bridges between the parent-metal layers. The joined exposed sections are heated in a protective atmosphere, and in the presence of excess reactive metal to form a continuous layer of the superconductive alloy on the bridge and the exposed areas that is continuous with the superconductive alloy layer on the superconducting tape.
    Type: Grant
    Filed: August 1, 1990
    Date of Patent: January 21, 1992
    Assignee: General Electric Company
    Inventors: Lee E. Rumaner, Mark G. Benz, Bruce A. Knudsen