Patents by Inventor Bruce Aitken

Bruce Aitken has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070252526
    Abstract: A sealing method for decreasing the time it takes to hermetically seal a device and the resulting hermetically sealed device (e.g., a hermetically sealed OLED device) are described herein. The sealing method includes the steps of: (1) cooling an un-encapsulated device; (2) depositing a sealing material over at least a portion of the cooled device to form an encapsulated device; and (3) heat treating the encapsulated device to form a hermetically sealed device. In one embodiment, the sealing material is a low liquidus temperature inorganic (LLT) material such as, for example, tin-fluorophosphate glass, tungsten-doped tin fluorophosphate glass, chalcogenide glass, tellurite glass, borate glass and phosphate glass. In another embodiment, the sealing material is a Sn2+-containing inorganic oxide material such as, for example, SnO, SnO+P2O5 and SnO+BPO4.
    Type: Application
    Filed: June 21, 2007
    Publication date: November 1, 2007
    Inventors: Bruce Aitken, Chong An, Mark Quesada
  • Publication number: 20070190338
    Abstract: The subject matter disclosed herein generally relates to glass compositions for protecting glass and methods of making and using the compositions.
    Type: Application
    Filed: February 10, 2006
    Publication date: August 16, 2007
    Inventors: Bruce Aitken, Josef Lapp
  • Publication number: 20070042894
    Abstract: A family of glasses from the rare earth alumino-silicate (RE2O3-Al2O3-SiO2) ternary system exhibiting high strain point and low liquidus temperatures; preferably the La2O3 -Al2O3-SiO2 ternary system. The glasses are excellent candidates for electronics applications and have the following composition, expressed in mole percent and calculated from the glass batch on an oxide basis: 60-85% SiO2, 10-25% Al2O3, and 4-15% RE2O3.
    Type: Application
    Filed: August 16, 2006
    Publication date: February 22, 2007
    Inventors: Bruce Aitken, Matthew Dejneka, Adam Ellison, Thomas Paulson
  • Publication number: 20070040501
    Abstract: A method for inhibiting oxygen and moisture degradation of a device and the resulting device are described herein. To inhibit the oxygen and moisture degradation of the device, a low liquidus temperature (LLT) material which typically has a low liquidus temperature (or in specific embodiments a low glass transition temperature) is used to form a barrier layer on the device. The LLT material can be, for example, tin fluorophosphate glass, chalcogenide glass, tellurite glass and borate glass. The LLT material can be deposited onto the device by, for example, sputtering, evaporation, laser-ablation, spraying, pouring, frit-deposition, vapor-deposition, dip-coating, painting or rolling, spin-coating or any combination thereof. Defects in the LLT material from the deposition step can be removed by a consolidation step (heat treatment), to produce a pore-free, gas and moisture impenetrable protective coating on the device. Although many of the deposition methods are possible with common glasses (i.e.
    Type: Application
    Filed: August 18, 2005
    Publication date: February 22, 2007
    Inventors: Bruce Aitken, Mark Lewis, Mark Quesada
  • Publication number: 20070007894
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Application
    Filed: September 15, 2006
    Publication date: January 11, 2007
    Inventors: Bruce Aitken, Joel Carberry, Steven DeMartino, Henry Hagy, Lisa Lamberson, Richard Miller, Robert Morena, Joseph Schroeder, Alexander Streltsov, Sujanto Widjaja
  • Publication number: 20060257097
    Abstract: The invention is directed to chalcogenide glasses suitable for use in plastics forming processes. The glasses have the general formula YZ, where Y is Ge, As, Sb or a mixture of two or more of the same; Z is S, Se, Te, or a mixture of two or more of the same; and Y and Z are present in amounts (in atomic/element percent) in the range of Y=15-70% and Z=30-85%. The chalcogenide glasses of the invention have a 10,000 poise temperature of 400 ° C. and are resistant to crystallization when processed at high shear rates at their 10,000 poise temperature. The glasses can be used to make, among other items, molded telecommunication elements, lenses and infrared sensing devices.
    Type: Application
    Filed: July 10, 2006
    Publication date: November 16, 2006
    Inventors: Bruce Aitken, Stephen Currie, Beth Monahan, Lung-Ming Wu, Everett Coonan
  • Publication number: 20060233512
    Abstract: The invention is directed to chalcogenide glasses suitable for use in plastics forming processes. The glasses have the general formula YZ, where Y is Ge, As, Sb or a mixture of two or more of the same; Z is S, Se, Te, or a mixture of two or more of the same; and Y and Z are present in amounts (in atomic/element percent) in the range of Y=15-70% and Z=30-85%. The chalcogenide glasses of the invention have a 10,000 poise temperature of 400° C. and are resistant to crystallization when processed at high shear rates at their 10,000 poise temperature. The glasses can be used to make, among other items, molded telecommunication elements, lenses and infrared sensing devices.
    Type: Application
    Filed: April 13, 2005
    Publication date: October 19, 2006
    Inventors: Bruce Aitken, Stephen Currie, Beth Monahan, Lung-Ming Wu, Everett Coonan
  • Publication number: 20060038228
    Abstract: The present invention relates to semiconductor-on-insulator structures having strained semiconductor layers. According to one embodiment of the invention, a semiconductor-on-insulator structure has a first layer including a semiconductor material, attached to a second layer including a glass or glass-ceramic, with the strain point of the glass or glass-ceramic equal to or greater than about 800° C.
    Type: Application
    Filed: August 17, 2005
    Publication date: February 23, 2006
    Inventors: Bruce Aitken, Matthew Dejneka, Kishor Gadkaree, Linda Pinckney
  • Publication number: 20060038227
    Abstract: The present invention relates to semiconductor-on-insulator structures having strained semiconductor layers. According to one embodiment of the invention, a semiconductor-on-insulator structure has a first layer including a semiconductor material, attached to a second layer including a glass or glass-ceramic, with the CTEs of the semiconductor and glass or glass-ceramic selected such that the first layer is under tensile strain. The present invention also relates to methods for making strained semiconductor-on-insulator layers.
    Type: Application
    Filed: August 3, 2005
    Publication date: February 23, 2006
    Inventors: Bruce Aitken, Kishor Gadkaree, Matthew Dejneka, Linda Pinckney
  • Publication number: 20060009109
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Application
    Filed: September 16, 2005
    Publication date: January 12, 2006
    Inventors: Bruce Aitken, Joel Carberry, Steven DeMartino, Henry Hagy, Lisa Lamberson, Richard Miller, Robert Morena, Joseph Schroeder, Alexander Streltsov, Sujanto Widjaja
  • Publication number: 20050274145
    Abstract: In one aspect, a method is provided for molding from glass complex optical components such as lenses, microlens, arrays of microlenses, and gratings or surface-relief diffusers having fine or hyperfine microstructures suitable for optical or electro-optical applications. In another aspect, mold masters or patterns, which define the profile of the optical components, made on metal alloys, particularly titanium or nickel alloys, or refractory compositions, with or without a non-reactive coating are provided. Given that molding optical components from oxide glasses has numerous drawbacks, it has been discovered in accordance with the invention that non-oxide glasses substantially eliminates these drawbacks. The non-oxide glasses, such as chalcogenide, chalcohalide, and halide glasses, may be used in the mold either in bulk, planar, or power forms. In the mold, the glass is heated to about 10-110° C., preferably about 50° C.
    Type: Application
    Filed: June 16, 2005
    Publication date: December 15, 2005
    Inventors: Bruce Aitken, Dilip Chatterjee, Daniel Raguin
  • Publication number: 20050170199
    Abstract: A substrate for flat panel display glasses comprising a glass the P2O5—SiO2—Al2O3 ternary system which yields stable glasses exhibiting high strain point temperatures, resistance to devitrification, good chemical durability, excellent dielectric properties, coefficients of thermal expansion that can be tailored to match that of silicon, and having liquidus viscosities that enable forming by conventional methods. The glass comprises the following composition as calculated in weight percent on an oxide basis: P2O5 33-75%, SiO2 2-52%, Al2O3 8-35%.
    Type: Application
    Filed: December 30, 2004
    Publication date: August 4, 2005
    Inventors: Bruce Aitken, George Beall, Linda Pinckney
  • Publication number: 20050142364
    Abstract: A family of glasses from the SiO2—Al2O3—P2O5 ternary system exhibiting high strain point, transparency, and low coefficient of thermal expansion. The glasses have the following composition, expressed in mol percent and calculated from the glass batch on an oxide basis: 55-80 SiO2, 12-30 Al2O3, and 2-15 P2O5.
    Type: Application
    Filed: December 30, 2004
    Publication date: June 30, 2005
    Inventor: Bruce Aitken
  • Publication number: 20050116245
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. In one embodiment, the hermetically sealed glass package is manufactured by providing a first substrate plate and a second substrate plate. The second substrate contains at least one transition or rare earth metal such as iron, copper, vanadium, manganese, cobalt, nickel, chromium, neodymium and/or cerium. A sensitive thin-film device that needs protection is deposited onto the first substrate plate. A laser is then used to heat the doped second substrate plate in a manner that causes a portion of it to swell and form a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the thin film device.
    Type: Application
    Filed: October 13, 2004
    Publication date: June 2, 2005
    Inventors: Bruce Aitken, Paul Danielson, James Dickinson, Stephan Logunov, Robert Morena, Mark Powley, Kamjula Reddy, Joseph Schroeder, Alexander Streltsov
  • Publication number: 20050001545
    Abstract: A hermetically sealed glass package and method for manufacturing the hermetically sealed glass package are described herein using an OLED display as an example. Basically, the hermetically sealed OLED display is manufactured by providing a first substrate plate and a second substrate plate and depositing a frit onto the second substrate plate. OLEDs are deposited on the first substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first substrate plate to the second substrate plate and also protects the OLEDs. The frit is glass that was doped with at least one transition metal and possibly a CTE lowering filler such that when the irradiation source heats the frit, it softens and forms a bond. This enables the frit to melt and form the hermetic seal while avoiding thermal damage to the OLEDs.
    Type: Application
    Filed: April 13, 2004
    Publication date: January 6, 2005
    Inventors: Bruce Aitken, Joel Carberry, Steven DeMartino, Henry Hagy, Lisa Lamberson, Richard Miller, Robert Morena, Joseph Schroeder, Alexander Streltsov, Sujanto Widjaja
  • Patent number: 6525431
    Abstract: A co-generation system for producing heat, hot water and electricity for a building is provided while generating a minimum of noise and vibration within the building. The system includes an engine and burner with a generation; a storage tank, for storage of primary water, which is adapted to contain therein the engine and generator; apparatus for circulating and heating the primary water, and apparatus for venting exhaust gases to the outside of the building. The hot water may also be secondary water and either or both water may be potable. The engine optimally operates on a Stirling cycle. The building may be a commercial or domestic dwelling which is free standing or part of a larger structure or may be mobile.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: February 25, 2003
    Assignee: Whisper Tech Limited
    Inventors: Donald Murray Clucas, Murray Bruce Aitken
  • Patent number: 6407853
    Abstract: The dual wavelength pumping scheme controls the relative population of the termination state vis-a-vis the metastable state. Praseodymium doped chalcogenide glass and a variety of thulium doped glasses are described as examples. The relative pump powers or wavelengths may be adjusted to control the gain spectrum of the amplifier, making the amplifier useful in a variety of different optical systems including wavelength division multiplexed systems.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: June 18, 2002
    Assignee: Corning Incorporated
    Inventors: Bryce Samson, Bruce Aitken