Patents by Inventor Bruce B. Chenoweth

Bruce B. Chenoweth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6759962
    Abstract: An ice detector has a pair of probes, each of which is used for determining the accretion of ice thereon. One of the probes in the assembly is configured so the smaller droplets of supercoooled water are inertially separated and flow away from the one probe. The ice accretion on the one probe is primarily from large (50 microns or greater) supercooled droplets. The ice accreting on the one probe is therefore biased to supercooled large droplets. The probes are connected to detection circuitry that will determine the ratio of the rates of icing between the probes so the presence of supercooled large droplets can be determined. In one form, a flow guide is arranged to create an airflow that carries smaller droplets past one of the probes without impinging on the probe, but the higher inertia, supercooled large droplets will impinge on that one probe.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: July 6, 2004
    Assignee: Rosemount Aerospace Inc.
    Inventors: John A. Severson, Bruce B. Chenoweth, Robert D. Rutkiewicz
  • Publication number: 20020158768
    Abstract: An ice detector has a pair of probes, each of which is used for determining the accretion of ice thereon. One of the probes in the assembly is configured so the smaller droplets of supercoooled water are inertially separated and flow away from the one probe. The ice accretion on the one probe is primarily from large (50 microns or greater) supercooled droplets. The ice accreting on the one probe is therefore biased to supercooled large droplets. The probes are connected to detection circuitry that will determine the ratio of the rates of icing between the probes so the presence of supercooled large droplets can be determined. In one form, a flow guide is arranged to create an airflow that carries smaller droplets past one of the probes without impinging on the probe, but the higher inertia, supercooled large droplets will impinge on that one probe.
    Type: Application
    Filed: September 4, 2001
    Publication date: October 31, 2002
    Inventors: John A. Severson, Bruce B. Chenoweth, Robert D. Rutkiewicz