Patents by Inventor Bruce D. Gunderson

Bruce D. Gunderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9037240
    Abstract: In general, the disclosure relates to techniques for providing a combination of stored diagnostic information, including impedance trend data, into one displayable report that may be used to diagnose a possible condition with an implantable medical electrode lead. One example device includes a processor that is configured to obtain impedance trend data for an electrical path, the electrical path comprising a plurality of electrodes, and to obtain additional diagnostic data that is associated with the electrical path, the additional diagnostic data being distinct from the impedance trend data. The device is further configured to combine both the impedance trend data and the additional diagnostic data into a displayable report that indicates whether there is a possible condition with the electrical path. The additional diagnostic data may include non-sustained episode data, sensing integrity data, pacing threshold, and/or electrogram data (such as P-wave amplitude and/or R-wave amplitude data).
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: May 19, 2015
    Assignee: Medtronic, Inc.
    Inventor: Bruce D. Gunderson
  • Patent number: 9008773
    Abstract: An implantable medical device capable of sensing cardiac signals and delivering cardiac electrical stimulation therapies is enabled to detect a short circuit condition. In one embodiment, a cardiac signal is sensed by a sensing module coupled to electrodes. A controller identifies signal events in response to the cardiac signal and detects a short circuit condition in response to at least one of the signal events having an amplitude crossing a short circuit detection threshold and a maximum of two signal events crossing the short circuit detection threshold occurring between two adjacent events having amplitudes not crossing the short circuit detection threshold. In one embodiment, the signal events are identified from a differential signal determined from the sensed cardiac signal.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 14, 2015
    Assignee: Medtronic, Inc.
    Inventor: Bruce D. Gunderson
  • Patent number: 8942795
    Abstract: An implantable cardioverter defibrillator (ICD) senses ventricular depolarizations (R-waves) in an electrogram signal to detect a ventricular tachycardia or fibrillation episodes. The EGM signal is also monitored in real time for characteristics that uniquely identify instances of T-wave oversensing. The ICD determines whether detection of a tachycardia or fibrillation episode is appropriate based upon counts of each of the unique characteristics evidencing T-wave oversensing.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: January 27, 2015
    Assignee: Medtronic, Inc.
    Inventors: Bruce D. Gunderson, Amisha S. Patel, Chad A. Bounds
  • Publication number: 20140350620
    Abstract: An implantable medical device capable of sensing cardiac signals and delivering cardiac electrical stimulation therapies is enabled to detect a short circuit event. A signal is sensed by a sensing module coupled to electrodes. A controller detects a short circuit event in response to a slope of the sensed signal exceeding a short circuit threshold.
    Type: Application
    Filed: August 13, 2014
    Publication date: November 27, 2014
    Inventors: Bruce D. Gunderson, Marshall S. Stanton
  • Publication number: 20140350621
    Abstract: An implantable medical device capable of sensing cardiac signals and delivering cardiac electrical stimulation therapies is enabled to detect a short circuit of a medical electrical lead. A physiological signal correlated to a motion of a patient is sensed via a physiological sensor. If a lead monitoring condition is met based on the physiological signal, a cardiac signal is acquired and analyzed to detect an abnormality. The short circuit of the medical electrical lead is detected in response to detecting the abnormality.
    Type: Application
    Filed: August 13, 2014
    Publication date: November 27, 2014
    Inventors: Bruce D. Gunderson, Marshall S. Stanton
  • Patent number: 8849400
    Abstract: A method and system for post-processing of sensing data associated with identification of a cardiac event by a medical device that includes transmitting a plurality of stored sensing data generated by the medical device to an access device, the stored sensing data including sensed atrial events and sensed ventricular events. The access device determines, in response to the transmitted data, instances where the medical device identified a cardiac event being detected in response to the sensing data, and generates a template in response to correlated morphologies of adjacent intervals prior to a detection interval corresponding to the cardiac being identified as the cardiac event and a morphology of the detection interval.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: September 30, 2014
    Assignee: Medtronic, Inc.
    Inventors: Bruce D. Gunderson, Mark L. Brown, Amisha Somabhai Patel
  • Publication number: 20140277229
    Abstract: An implantable medical device capable of sensing cardiac signals and delivering cardiac electrical stimulation therapies is enabled to detect a short circuit condition. In one embodiment, a cardiac signal is sensed by a sensing module coupled to electrodes. A controller identifies signal events in response to the cardiac signal and detects a short circuit condition in response to at least one of the signal events having an amplitude crossing a short circuit detection threshold and a maximum of two signal events crossing the short circuit detection threshold occurring between two adjacent events having amplitudes not crossing the short circuit detection threshold. In one embodiment, the signal events are identified from a differential signal determined from the sensed cardiac signal.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: MEDTRONIC, INC.
    Inventor: Bruce D. Gunderson
  • Patent number: 8831725
    Abstract: A method and system of post-processing of sensing data generated by a medical device that includes transmitting a plurality of stored sensing data generated by the medical device to an access device, the stored sensing data including sensed atrial events and sensed ventricular events. The access device determines, in response to the transmitted data, instances where the medical device identified a cardiac event being detected in response to the sensing data, and determines a ratio of sensed atrial events to sensed ventricular events in response to the transmitted data.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: September 9, 2014
    Assignee: Medtronic, Inc.
    Inventors: Bruce D. Gunderson, Mark L. Brown, Amisha Somabhai Patel
  • Patent number: 8798750
    Abstract: In general, the disclosure describes techniques for detecting lead related conditions, such as lead fractures or other lead integrity issues. As described herein, delivering an electrical signal through selected electrodes may result in, reveal, or amplify noise if a lead related condition is present. A processor may detect electrical noise indicative of the lead related condition subsequent to the delivery of the electrical signal, and identify a lead related condition in response to detecting the noise.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: August 5, 2014
    Assignee: Medtronic, Inc.
    Inventors: Bruce D. Gunderson, Kevin A. Wanasek, Charles D. Swerdlow
  • Patent number: 8792971
    Abstract: A method for identifying oversensing in implantable medical devices (IMDs), such as implantable cardioverter defibrillators (ICDs), is described. A near-field electrogram signal and a far-field electrogram signal are obtained via a near-field electrode pair and a far-field electrode pair. The near-field electrogram signal is compared to the far-field electrogram signal and a determination of whether oversensing exists is made based on the comparison. In some instances, a scheduled therapy is withheld in response to determining that oversensing exists.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: July 29, 2014
    Assignee: Medtronic, Inc.
    Inventors: Bruce D. Gunderson, Amisha S. Patel, Chad A. Bounds, Mark L. Brown
  • Patent number: 8781585
    Abstract: In general, the disclosure is directed to techniques for identification and remediation of oversensed cardiac events using far-field electrograms (FFEGMs). Identification of oversensed cardiac events can be used in an ICD to prevent ventricular fibrillation (VF) detection, and thereby avoid delivery of an unnecessary defibrillation shock. Alternatively, or additionally, identification of oversensed cardiac events can be used in an ICD to support delivery of bradycardia pacing during an oversensing condition. In some cases, bradycardia pacing delivered in response to detection of oversensed cardiac events may include pacing pulses from multiple vectors to provide redundancy in the event the oversensing may be due to a lead-related condition.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: July 15, 2014
    Assignee: Medtronic, Inc.
    Inventors: Bruce D. Gunderson, Donald James Ruzin
  • Patent number: 8774909
    Abstract: The present disclosure is directed to the classification of cardiac episodes using an algorithm. In various examples, an episode classification algorithm evaluates electrogram signal data from a near-field channel and a far-field channel. The episode classification algorithm classifies the cardiac episode based on the evaluation of the electrogram signal data for at least one of the near-field and far-field channels. In some examples, a cardiac episode being classified may be an episode that resulted in treatment being provided by an implantable medical device. Possible classifications of the cardiac episode may include, for example, unknown, inappropriate, appropriate, supraventricular tachycardia, ventricular tachycardia, ventricular fibrillation or ventricular over-sensing.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: July 8, 2014
    Assignee: Medtronic, Inc.
    Inventors: Amisha S. Patel, Bruce D. Gunderson, Mark L. Brown
  • Patent number: 8744560
    Abstract: The present disclosure is directed to generating and displaying an electrogram (EGM) summary for use by physicians or other clinicians. An implantable medical device (IMD) transmits EGM signal data for a number of cardiac episodes to an external computing device. The external computing device selects a subset of the cardiac episodes for which information or images are displayed to the user. In various examples, cardiac episodes may be selected for display based at least in part on a retrospective analysis classification of the cardiac episode.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: June 3, 2014
    Assignee: Medtronic, Inc.
    Inventors: Bruce D. Gunderson, Karen J. Kleckner, Kevin T. Ousdigian, Amisha S. Patel, Julian Sanchez
  • Publication number: 20140121716
    Abstract: An implantable medical device capable of delivering high voltage therapy includes a therapy delivery module comprising a high voltage therapy delivery circuit, a high voltage short circuit protection circuit configured to terminate delivery of a high voltage pulse by the therapy delivery module in response to a short circuit condition, and a sensing module for detecting a need for a high voltage therapy. The device further includes a therapy control unit configured to control the therapy delivery module to deliver a shock pulse in response to detecting the need for the high voltage therapy. The control unit detects a termination of the high voltage pulse by the protection circuit; a truncated shock charge remaining on the high voltage therapy delivery circuit upon terminating the high voltage pulse. The control unit controls the therapy delivery module to deliver a next shock pulse at the remaining truncated shock charge.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: Medtronic, Inc.
    Inventors: David A. Casavant, Mark E. Gibbs, Bruce D. Gunderson, Robert A. Betzold
  • Patent number: 8660643
    Abstract: Techniques for determining whether a lead related condition exists based on analysis of a cardiac electrical signal associated with a non-sustained tachyarrhythmia (NST) are described. In some examples, the techniques include determining the duration of intervals between consecutive cardiac events, e.g., R-R intervals, during an NST. The techniques may further include determining one or more metrics based on the durations of the intervals during the NST. Examples of metrics include an average, a minimum, a maximum, a range, a median, a mode, or a mean. A lead related condition is identified based on the values of the one or more metrics, e.g., by comparison to respective thresholds. In some examples, an alert is provided or a therapy modification is suggested if a lead related condition is identified.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: February 25, 2014
    Assignee: Medtronic, Inc.
    Inventor: Bruce D. Gunderson
  • Publication number: 20140046690
    Abstract: Techniques, systems, and devices, for generating a patient management report based on clinician input and patient data are described. For example, one or more processors may be configured to receive a clinician input selecting at least one reporting characteristic for each of a plurality of diagnostic metrics and organize the diagnostic metrics based on the selected reporting characteristic. In addition, the one or more processors may be configured to receive patient data for at least one patient, determine a value for at least a subset of the diagnostic metrics based on the patient data, and generate a patient management report comprising the diagnostic metrics having a value that exceeds a respective threshold. The diagnostic metrics may be ordered in the patient management report based on the organization.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 13, 2014
    Applicant: Medtronic, Inc.
    Inventors: Bruce D. Gunderson, Kevin T. Ousdigian, Amisha S. Patel
  • Patent number: 8644931
    Abstract: In general, the disclosure relates to techniques for calculating mean impedance values and impedance variability values to detect a possible condition with a lead or device-lead pathway or connection. In one example, a device may be configured to determine an impedance value for an electrical path based on a plurality of measured impedance values for the electrical path, wherein the electrical path comprises a plurality of electrodes, and to determine an impedance variability value based on at least one of the plurality of measured impedance values. The device may be further configured to determine a threshold value based on the determined impedance value and the impedance variability value, compare a newly measured impedance value for the electrical path to the threshold value, and indicate a possible condition of the electrical path based on the comparison.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: February 4, 2014
    Assignee: Medtronic, Inc.
    Inventors: Robert W. Stadler, Bruce D. Gunderson, Amisha S. Patel
  • Publication number: 20140018873
    Abstract: A medical device system and method for detecting cardiac lead dislodgement measures intervals between sensed cardiac events for detecting an event interval pattern including at least one short event interval consecutively followed by a long event interval. Responsive to detecting the event interval pattern, a cardiac signal amplitude associated with a detected short event interval is measured. Dislodgement of the cardiac lead is detected in response to the measured amplitude.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 16, 2014
    Inventor: Bruce D. Gunderson
  • Publication number: 20130304160
    Abstract: A technique for identifying lead-related conditions, such as insulation breaches and/or externalization of lead conductors, includes analyzing characteristics of electrical signals generated on one or more electrode sensing vectors of the lead by a test signal to determine whether a lead-related condition exists. The characteristics of the electrical signals induced on the lead by the test signal may be significantly different on a lead having an insulation breach or externalized conductor than on a lead not having such lead-related conditions. As such, the implantable medical device may be subject to a known test signal and analyze the signals on the lead to detect lead-related conditions.
    Type: Application
    Filed: March 14, 2013
    Publication date: November 14, 2013
    Applicant: MEDTRONIC, INC.
    Inventors: Bruce D. Gunderson, Walter H. Olson, ShaileshKumar V. Musley, Jennifer P. Miller
  • Publication number: 20130304139
    Abstract: A technique for identifying lead-related conditions, such as insulation breaches and/or externalization of lead conductors, includes analyzing characteristics of electrical signals generated on one or more electrode sensing vectors of the lead by a test signal to determine whether a lead-related condition exists. The characteristics of the electrical signals induced on the lead by the test signal may be significantly different on a lead having an insulation breach or externalized conductor than on a lead not having such lead-related conditions. As such, the implantable medical device may be subject to a known test signal and analyze the signals on the lead to detect lead-related conditions.
    Type: Application
    Filed: March 14, 2013
    Publication date: November 14, 2013
    Applicant: MEDTRONIC, INC.
    Inventors: ShaileshKumar V. Musley, Bruce D. Gunderson, Walter H. Olson, Jennifer P. Miller