Patents by Inventor Bruce E. Adams

Bruce E. Adams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7438468
    Abstract: A thermal processing system includes a source of laser radiation emitting at a laser wavelength, beam projection optics disposed between the reflective surface and a substrate support capable of holding a substrate to be processed, a pyrometer responsive to a pyrometer wavelength, and a wavelength responsive optical element having a first optical path for light in a first wavelength range including the laser wavelength, the first optical path being between the source of laser radiation and the beam projection optics, and a second optical path for light in a second wavelength range including the pyrometer wavelength, the second optical path being between the beam projection optics and the pyrometer. The system can further include a pyrometer wavelength blocking filter between the source of laser radiation and the wavelength responsive optical element.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: October 21, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Aaron M. Hunter, Abhilash J. Mayur, Vijay Parihar, Timothy N. Thomas
  • Publication number: 20080217306
    Abstract: A system for thermal processing of a substrate includes a source of radiation, optics disposed between the source and the substrate to receive light from the source of radiation at the optics proximate end, and a housing holding the optics and having a void inside the housing isolated from light emitted from the source. A light detector is disposed within the void in the housing to detect light from the optics emitted into the housing and send a deterioration signal. The system further includes a power supply for the source of radiation, and a controller to control the power supply based on the deterioration signal from the light detector.
    Type: Application
    Filed: March 12, 2008
    Publication date: September 11, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Aaron Muir Hunter, Abhilash J. Mayur, Vijay Parihar
  • Patent number: 7422988
    Abstract: A thermal processing system includes a source of laser radiation having an array of lasers emitting light at a laser wavelength, a substrate support, optics disposed between said source and said substrate support for forming a line beam in a substrate plane of the substrate support from the light emitted by the source of laser radiation, and scanning apparatus for effecting movement of said line beam relative to said substrate support in a direction transverse to the longitudinal axis of said line beam. The system further includes a housing encompassing said optics, a light detector disposed inside said housing for sensing an ambient light level, a power supply coupled to the source of laser radiation, and a controller governing said power supply and responsive to said light detector for interrupting said power supply upon an increase in the output of said light detector above a threshold ambient level.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: September 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Aaron M. Hunter, Abhilash J. Mayur, Vijay Parihar
  • Publication number: 20080214014
    Abstract: The present invention generally provides an absorber layer using carbon based materials with increased and stabled thermal absorption coefficient and economical methods to produce such an absorber layer. One embodiment of the present invention provides a method for processing a substrate comprising depositing an absorber layer on a top surface of the substrate, wherein the substrate is maintained under a first temperature, annealing the substrate in a thermal processing chamber, wherein the substrate is heated to a second temperature, and the second temperature is higher than the first temperature, and removing the absorber layer from the substrate.
    Type: Application
    Filed: March 2, 2007
    Publication date: September 4, 2008
    Inventors: JOSEPH M. RANISH, Bruce E. Adams
  • Publication number: 20080170842
    Abstract: The present invention provides apparatus and methods for achieving uniform heating to a substrate during a rapid thermal process. More particularly, the present invention provides apparatus and methods for controlling the temperature of an edge ring supporting a substrate during a rapid thermal process to improve temperature uniformity across the substrate.
    Type: Application
    Filed: January 15, 2007
    Publication date: July 17, 2008
    Inventors: AARON MUIR HUNTER, Bruce E. Adams, Mehran Behdjat, Rajesh S. Ramanujam, Joseph M. Ranish
  • Publication number: 20080145038
    Abstract: A method and apparatus for heating a substrate is provided herein. In one embodiment, a substrate heater includes a vessel having an upper member including a top surface for supporting a substrate thereon; a liquid disposed within and partially filling the vessel; and a heat source for providing sufficient heat to the liquid to boil the liquid. Optionally, a pressure controller for regulating the pressure within the vessel may be provided. The substrate is heated by first placing the substrate on the support surface of the vessel of the substrate heater. The liquid contained in the vessel is then boiled. As the liquid is boiling, a uniform film of heated condensation is deposited on a bottom side of the support surface. The heated condensation heats the support surface which in turn, heats the substrate.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Applicant: Applied Materials, Inc.
    Inventors: JOSEPH M. RANISH, Bruce E. Adams, Aaron M. Hunter
  • Publication number: 20080142208
    Abstract: A method and apparatus for heating a substrate is provided herein. In one embodiment, a substrate heater includes a vessel having an upper member including a top surface for supporting a substrate thereon; a liquid disposed within and partially filling the vessel; and a heat source for providing sufficient heat to the liquid to boil the liquid. Optionally, a pressure controller for regulating the pressure within the vessel may be provided. The substrate is heated by first placing the substrate on the support surface of the vessel of the substrate heater. The liquid contained in the vessel is then boiled. As the liquid is boiling, a uniform film of heated condensation is deposited on a bottom side of the support surface. The heated condensation heats the support surface which in turn, heats the substrate.
    Type: Application
    Filed: December 15, 2006
    Publication date: June 19, 2008
    Applicant: Applied Materials, Inc.
    Inventors: JOSEPH M. RANISH, Bruce E. Adams, Aaron M. Hunter
  • Publication number: 20080121626
    Abstract: Apparatus for dynamic surface annealing of a semiconductor wafer includes a source of laser radiation emitting at a laser wavelength and comprising an array of lasers arranged in rows and columns, the optical power of each the laser being individual adjustable and optics for focusing the radiation from the array of lasers into a narrow line beam in a workpiece plane corresponding to a workpiece surface, whereby the optics images respective columns of the laser array onto respective sections of the narrow line beam. A pyrometer sensor is provided that is sensitive to a pyrometer wavelength. An optical element in an optical path of the optics is tuned to divert radiation emanating from the workpiece plane to the pyrometry sensor. As a result, the optics images each of the respective section of the narrow line beam onto a corresponding portion of the pyrometer sensor.
    Type: Application
    Filed: September 1, 2006
    Publication date: May 29, 2008
    Inventors: Timothy N. Thomas, Dean Jennings, Bruce E. Adams, Abhilash J. Mayur
  • Publication number: 20080118641
    Abstract: Methods for compensating for a thermal profile in a substrate heating process are provided herein. In one embodiment, a method of processing a substrate includes determining an initial thermal profile of a substrate resulting from a process; imposing a compensatory thermal profile on the substrate based on the initial thermal profile; and performing the process to create a desired thermal profile on the substrate. In other embodiments of the invention, the initial substrate thermal profile is compensated for by adjusting a local mass heated per unit area, a local heat capacity per unit area, or an absorptivity or reflectivity of a component proximate the substrate prior to performing the process. In another embodiment, the heat provided by an edge ring to the substrate may be controlled either prior to or during the substrate heating process.
    Type: Application
    Filed: November 20, 2006
    Publication date: May 22, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Joseph M. Ranish, Bruce E. Adams
  • Patent number: 7135392
    Abstract: A method for forming P-N junctions in a semiconductor wafer includes ion implanting dopant impurities into the wafer and annealing the wafer using a thermal flux laser annealing apparatus that includes an array of semiconductor laser emitters arranged in plural parallel rows extending along a slow axis, plural respective cylindrical lenses overlying respective ones of the rows of laser emitters for collimating light from the respective rows along a fast axis generally perpendicular to the slow axis, a homogenizing light pipe having an input face at a first end for receiving light from the plural cylindrical lenses and an output face at an opposite end, the light pipe comprising a pair of reflective walls extending between the input and output faces and separated from one another along the direction of the slow axis, and scanning apparatus for scanning light emitted from the homogenizing light pipe across the wafer in a scanning direction parallel to the fast axis.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: November 14, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Abhilash J. Mayur, Vijay Parihar, Joseph M. Ranish
  • Patent number: 7129440
    Abstract: Apparatus for thermally processing a semiconductor wafer includes an array of semiconductor laser emitters arranged in plural parallel rows extending along a slow axis, plural respective cylindrical lenses overlying respective ones of the rows of laser emitters for collimating light from the respective rows along a fast axis generally perpendicular to the slow axis, a homogenizing light pipe having an input face at a first end for receiving light from the plural cylindrical lenses and an output face at an opposite end, the light pipe comprising a pair of reflective walls extending between the input and output faces and separated from one another along the direction of the slow axis, and scanning apparatus for scanning light emitted from the homogenizing light pipe across the wafer in a scanning direction parallel to the fast axis.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: October 31, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Abhilash J. Mayur, Vijay Parihar, Joseph M. Ranish
  • Publication number: 20020150779
    Abstract: A flooring resistant to bottom-up staining is provided which includes a substrate; a polyethylene terephthalate (PET) barrier layer contacting the substrate; and a flooring structure in contact with the PET barrier layer. A method for manufacturing the flooring utilizing lamination processes is also provided.
    Type: Application
    Filed: April 11, 2001
    Publication date: October 17, 2002
    Inventors: Harry D. Ward, Bruce E. Adams, William J. Kauffman, Eugene M. Kirchner, Thomas J. Moore
  • Patent number: 5769540
    Abstract: Thermal, optical, physical and chemical characteristics of a substrate (11) surface are determined with non-contact optical techniques that include illuminating (23) the surface with radiation having a ripple intensity characteristic (51), and then measuring the combined intensities (53) of that radiation after modification by the substrate surface and radiation emitted from the surface. Precise determinations of emissivity, reflectivity, temperature, changing surface composition, the existence of any layer formed on the surface and its thickness are all possible from this measurement. They may be made in situ and substantially in real time, thus allowing the measurement to control (39, 41) various processes of treating a substrate surface. This has significant applicability to semiconductor wafer processing and metal processing.
    Type: Grant
    Filed: January 12, 1994
    Date of Patent: June 23, 1998
    Assignee: Luxtron Corporation
    Inventors: Charles W. Schietinger, Bruce E. Adams
  • Patent number: 5490728
    Abstract: Thermal, optical, physical and chemical characteristics of a substrate (11) surface are determined with non-contact optical techniques that include illuminating (23) the surface with radiation having a ripple intensity characteristic (51), and then measuring the combined intensities (53) of that radiation after modification by the substrate surface and radiation emitted from the surface. Precise determinations of emissivity, reflectivity, temperature, changing surface composition, the existence of any layer formed on the surface and its thickness are all possible from this measurement. They may be made in situ and substantially in real time, thus allowing the measurement to control (39, 41) various processes of treating a substrate surface. This has significant applicability to semiconductor wafer processing and metal processing.
    Type: Grant
    Filed: January 12, 1994
    Date of Patent: February 13, 1996
    Assignee: Luxtron Corporation
    Inventors: Charles W. Schietinger, Bruce E. Adams
  • Patent number: 5318362
    Abstract: A non-contact pyrometric technique is provided for measuring the temperature and/or emissivity of an object that is being heated by electromagnetic radiation within the optical range. The measurement is made at short wavelengths for the best results. The measurement may be made at wavelengths within those of the heating optical radiation, and the resulting potential error from detecting heating radiation reflected from the object is avoided by one of two specific techniques. A first technique utilizes a mirror positioned between the heating lamps and the object, the mirror reflecting a narrow wavelength band of radiation in which the optical pyrometer detector operates. The second technique is to independently measure the a.c. ripple of the heating lamp radiation and subtract the background optical noise from the detected object signal in order to determine temperature and emissivity of the object. Both of these techniques can be combined, if desired.
    Type: Grant
    Filed: September 11, 1992
    Date of Patent: June 7, 1994
    Assignee: Luxtron Corporation
    Inventors: Charles W. Schietinger, Bruce E. Adams
  • Patent number: 5310260
    Abstract: Thermal, optical, physical and chemical characteristics of a substrate (11) surface are determined with non-contact optical techniques that include illuminating (23) the surface with radiation having a ripple intensity characteristic (51), and then measuring the combined intensities (53) of that radiation after modification by the substrate surface and radiation emitted from the surface. Precise determinations of emissivity, reflectivity, temperature, changing surface composition, the existence of any layer formed on the surface and its thickness are all possible from this measurement. They may be made in situ and substantially in real time, thus allowing the measurement to control (39, 41) various processes of treating a substrate surface. This has significant applicability to semiconductor wafer processing and metal processing.
    Type: Grant
    Filed: December 28, 1992
    Date of Patent: May 10, 1994
    Assignee: Luxtron Corporation
    Inventors: Charles W. Schietinger, Bruce E. Adams
  • Patent number: 5183338
    Abstract: High temperature range black body techniques are combined with lower temperature range photoluminescent techniques to provide an optical method and apparatus for measuring temperature over a very wide range. Among the various optical probe configurations disclosed which combine the black body and photoluminescent technologies is an optical temperature measuring probe including an elongated transparent light pipe with a black body cavity and a photoluminescent material adjacent one end of the light pipe. Signal detection and processing can be combined, and temperature measurements made by the photoluminescent technique within an overlap of the two temperature ranges can be used to calibrate measurements made in the higher range by the black body technique.
    Type: Grant
    Filed: December 13, 1991
    Date of Patent: February 2, 1993
    Assignee: Luxtron Corporation
    Inventors: Kenneth A. Wickersheim, Bruce E. Adams
  • Patent number: 5166080
    Abstract: The thickness of a thin film on a substrate surface is determined by measuring its emissivity and temperature with a non-contact optical technique and then calculating the film thickness from these measurements. The thickness of the film can be determined by this technique in situ, while it is being formed and substantially in real time, thus allowing the measurement to control the film forming process. This has application to controlling the formation of dielectric and other material layers on a semiconductor substrate in the course of manufacturing electornic integrate circuits, including automatically terminating the process at its endpoint when the layer has reached a desired thickness.
    Type: Grant
    Filed: April 29, 1991
    Date of Patent: November 24, 1992
    Assignee: Luxtron Corporation
    Inventors: Charles W. Schietinger, Bruce E. Adams
  • Patent number: 5154512
    Abstract: A non-contact pyrometric technique is provided for measuring the temperature and/or emissivity of an object that is being heated by electromagnetic radiation within the optical range. The measurement is made at short wavelengths for the best results. The measurement may be made at wavelengths within those of the heating optical radiation, and the resulting potential error from detecting heating radiation reflected from the object is avoided by one of two specific techniques. A first technique utilizes a mirror positioned between the heating lamps and the object, the mirror reflecting a narrow wavelength band of radiation in which the optical pyrometer detector operates. The second technique is to independently measure the a.c. ripple of the heating lamp radiation and subtract the background optical noise from the detected object signal in order to determine temperature and emissivity of the object. Both of these techniques can be combined, if desired.
    Type: Grant
    Filed: April 10, 1990
    Date of Patent: October 13, 1992
    Assignee: Luxtron Corporation
    Inventors: Charles W. Schietinger, Bruce E. Adams
  • Patent number: 5112137
    Abstract: High temperature range black body techniques are combined with lower temperature range photoluminescent techniques to provide an optical method and apparatus for measuring temperature over a very wide range. Various optical probe configurations are disclosed which combine the black body and photoluminescent technologies. Signal detection and processing can be combined, and temperature measurements made by the photoluminescent technique within an overlap of the two temperature ranges can be used to calibrate measurements made in the higher range by the black body technique.
    Type: Grant
    Filed: April 10, 1991
    Date of Patent: May 12, 1992
    Assignee: Luxtron Corporation
    Inventors: Kenneth A. Wickersheim, Bruce E. Adams