Patents by Inventor Bruce E. Reynolds

Bruce E. Reynolds has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9206361
    Abstract: A method to upgrade heavy oil feedstock using an ebullated bed reactor and a novel catalyst system is provided. The ebullated bed reactor system includes two different catalyst with different characteristics: an expanded catalyst zone containing particulate catalyst having a particle size of greater than 0.65 mm; and a slurry catalyst having an average particle size ranging from 1 to 300 ?m. The slurry catalyst is provided to the ebullated bed system containing the heavy oil feedstock, and entrained in the upflowing hydrocarbon liquid passing through the ebullated bed reaction zone. The slurry catalyst reduces the formation of sediment and coke precursors in the ebullating bed reactor system. The slurry catalyst is prepared from rework materials, which form a slurry catalyst in-situ upon mixing with the heavy oil feedstock.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: December 8, 2015
    Assignee: Chevron U.S.A. .Inc.
    Inventors: Julie Chabot, Bruce E. Reynolds, Erin Maris, Shuwu Yang
  • Patent number: 9169449
    Abstract: A method to upgrade heavy oil feedstock using an ebullated bed reactor and a novel catalyst system is provided. The ebullated bed reactor system includes two different catalyst with different characteristics: an expanded catalyst zone containing particulate catalyst having a particle size of greater than 0.65 mm; and a slurry catalyst having an average particle size ranging from 1 to 300 ?m. The slurry catalyst is introduced to the ebullated bed system with the heavy oil feedstock, and entrained in the upflowing hydrocarbon liquid passing through the ebullated bed reaction zone. The slurry catalyst reduces the formation of sediment and coke precursors in the ebullating bed reactor system. The slurry catalyst is prepared from at least a water-soluble metal precursor and pre-sulfided prior to being introduced with the heavy oil feedstock to the reactor system, or sulfided in-situ in the ebullated bed reactor in another embodiment.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: October 27, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Reynolds, Julie Chabot, Erin Maris, Sean Solberg, Kaidong Chen
  • Patent number: 8765622
    Abstract: A method of recovering unsupported fine catalyst from heavy oil comprises combining a slurry comprising unsupported fine catalyst in heavy oil with solvent to form a combined slurry-solvent stream. The combined slurry-solvent stream is filtered in a deoiling zone. A stream comprising unsupported fine catalyst and solvent is recovered from the deoiling zone. Unsupported fine catalyst is separated from the stream comprising unsupported fine catalyst and solvent. Filtering in the deoiling zone can comprise filtering the slurry and solvent through a cross-flow microfiltration unit, recovering a retentate stream of the cross-flow microfiltration unit, combining the retentate stream of the cross-flow microfiltration unit with solvent to form a combined retentate-solvent stream, and filtering the combined retentate-solvent stream through a cross-flow microfiltration unit.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: July 1, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Lalit S. Shah, Christopher A. Powers, James R. Stoy, Fred D. Brent, Bruce E. Reynolds, Andre R. Da Costa
  • Publication number: 20120152806
    Abstract: A method to upgrade heavy oil feedstock using an ebullated bed reactor and a novel catalyst system is provided. The ebullated bed reactor system includes two different catalyst with different characteristics: an expanded catalyst zone containing particulate catalyst having a particle size of greater than 0.65 mm; and a slurry catalyst having an average particle size ranging from 1 to 300 ?m. The slurry catalyst is introduced to the ebullated bed system with the heavy oil feedstock, and entrained in the upflowing hydrocarbon liquid passing through the ebullated bed reaction zone. The slurry catalyst reduces the formation of sediment and coke precursors in the ebullating bed reactor system. The slurry catalyst is prepared from at least a water-soluble metal precursor and pre-sulfided prior to being introduced with the heavy oil feedstock to the reactor system, or sulfided in-situ in the ebullated bed reactor in another embodiment.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Inventors: Bruce E. Reynolds, Julie Chabot, Erin Maris, Sean Solberg, Kaidong Chen
  • Publication number: 20120152805
    Abstract: A method to upgrade heavy oil feedstock using an ebullated bed reactor and a novel catalyst system is provided. The ebullated bed reactor system includes two different catalyst with different characteristics: an expanded catalyst zone containing particulate catalyst having a particle size of greater than 0.65 mm; and a slurry catalyst having an average particle size ranging from 1 to 300 ?m. The slurry catalyst is provided to the ebullated bed system containing the heavy oil feedstock, and entrained in the upflowing hydrocarbon liquid passing through the ebullated bed reaction zone. The slurry catalyst reduces the formation of sediment and coke precursors in the ebullating bed reactor system. The slurry catalyst is prepared from rework materials, which form a slurry catalyst in-situ upon mixing with the heavy oil feedstock.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Inventors: Julie Chabot, Bruce E. Reynolds, Erin Maris, Shuwu Yang
  • Patent number: 7837864
    Abstract: An integrated process for extracting and refining bitumen comprises hydroconverting bitumen in a reactor to provide valuable products and light oil by-product; separating the light oil by-product from the valuable products; transporting the light oil to oil sands reserves; producing steam in steam generators at the oil sands reserves using a portion of the light oil transported to the oil sands reserves; extracting bitumen from the oil sands reserves using steam produced in the steam generators; blending bitumen extracted from the oil sands reserves and a portion of the light oil transported to the oil sands reserves to form a transport blend; and transporting the transport blend to the reactor.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: November 23, 2010
    Assignee: Chevron U. S. A. Inc.
    Inventor: Bruce E. Reynolds
  • Patent number: 7771584
    Abstract: A process for slurry hydroprocessing, which involves preconditioning a slurry catalyst for activity improvement in vacuum residuum hydroprocessing units Preconditioning the slurry catalyst raises its temperature, thereby reducing shock on the catalyst slurry as it enters the hydroprocessing reactor.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: August 10, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Reynolds, Axel Brait
  • Patent number: 7737068
    Abstract: A process for recovering catalytic metals from fine catalyst slurried in heavy oil comprises pyrolizing fine catalyst slurried in heavy oil to provide one or more lighter oil products and a coke-like material and recovering catalytic metals from the coke-like material.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: June 15, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Christopher A. Powers, Donald H. Mohr, Bruce E. Reynolds, Jose Guitian Lopez
  • Patent number: 7678732
    Abstract: The instant invention is directed to the preparation of a slurry catalyst composition. The slurry catalyst composition is prepared in a series of steps, involving mixing a Group VIB metal oxide and aqueous ammonia to form an aqueous mixture and sulfiding the mixture to form a slurry. The slurry is then promoted with a Group VIII metal. Subsequent steps involve mixing the slurry with a hydrocarbon oil, and combining the resulting mixture with hydrogen gas (under conditions which maintain the water in a liquid phase) to produce the active slurry catalyst.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: March 16, 2010
    Assignee: Chevron USA Inc.
    Inventors: Kaidong Chen, Bruce E. Reynolds, Darush Farshid
  • Patent number: 7585404
    Abstract: This application discloses a process for decomposition of ammonium sulfates found in a stream comprising ammonium sulfate and slurry catalyst in oil. The ammonium sulfate is broken down into ammonia and hydrogen sulfide gas. These gases have many uses throughout the refinery, including the preparation of slurry hydroprocessing catalyst.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: September 8, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Reynolds, Axel Brait
  • Publication number: 20090159506
    Abstract: An integrated process for extracting and refining bitumen comprises hydroconverting bitumen in a reactor to provide valuable products and light oil by-product; separating the light oil by-product from the valuable products; transporting the light oil to oil sands reserves; producing steam in steam generators at the oil sands reserves using a portion of the light oil transported to the oil sands reserves; extracting bitumen from the oil sands reserves using steam produced in the steam generators; blending bitumen extracted from the oil sands reserves and a portion of the light oil transported to the oil sands reserves to form a transport blend; and transporting the transport blend to the reactor.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: Chevron U.S.A. Inc.
    Inventor: Bruce E. Reynolds
  • Publication number: 20090163352
    Abstract: A process for recovering catalytic metals from fine catalyst slurried in heavy oil comprises pyrolizing fine catalyst slurried in heavy oil to provide one or more lighter oil products and a coke-like material and recovering catalytic metals from the coke-like material.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: Chevron U.S.A. Inc.
    Inventors: Christopher A. Powers, Donald H. Mohr, Bruce E. Reynolds, Jose Guitian Lopez
  • Publication number: 20090163347
    Abstract: A method of recovering unsupported fine catalyst from heavy oil comprises combining a slurry comprising unsupported fine catalyst in heavy oil with solvent to form a combined slurry-solvent stream. The combined slurry-solvent stream is filtered in a deoiling zone. A stream comprising unsupported fine catalyst and solvent is recovered from the deoiling zone. Unsupported fine catalyst is separated from the stream comprising unsupported fine catalyst and solvent. Filtering in the deoiling zone can comprise filtering the slurry and solvent through a cross-flow microfiltration unit, recovering a retentate stream of the cross-flow microfiltration unit, combining the retentate stream of the cross-flow microfiltration unit with solvent to form a combined retentate-solvent stream, and filtering the combined retentate-solvent stream through a cross-flow microfiltration unit.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: Chevron U.S.A. Inc.
    Inventors: Lalit S. Shah, Christopher A. Powers, James R. Stoy, Fred D. Brent, Bruce E. Reynolds, Andre R. Da Costa
  • Publication number: 20080305947
    Abstract: The instant invention is directed to the preparation of a slurry catalyst composition. The slurry catalyst composition is prepared in a series of steps, involving mixing a Group VIB metal oxide and aqueous ammonia to form an aqueous mixture and sulfiding the mixture to form a slurry. The slurry is then promoted with a Group VIII metal. Subsequent steps involve mixing the slurry with a hydrocarbon oil, and combining the resulting mixture with hydrogen gas (under conditions which maintain the water in a liquid phase) to produce the active slurry catalyst.
    Type: Application
    Filed: July 7, 2008
    Publication date: December 11, 2008
    Inventors: Kaidong Chen, Bruce E. Reynolds
  • Patent number: 7410928
    Abstract: The instant invention is directed to the preparation of a catalyst composition suitable for the hydroconversion of heavy oils. The catalyst composition is prepared by a series of steps, involving mixing a Group VIB metal oxide particularly molybdenum oxide and aqueous ammonia to form an aqueous mixture, and sulfiding the mixture to form a slurry. The slurry is then promoted with a Group VIII metal. Subsequent steps involve mixing the slurry with a hydrocarbon oil and combining the resulting mixture with hydrogen gas and a second hydrocarbon oil having a lower viscosity than the first oil. An active catalyst composition is thereby formed.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: August 12, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Kaidong Chen, Pak C. Leung, Bruce E. Reynolds
  • Patent number: 7396799
    Abstract: The instant invention is directed to the preparation of a slurry catalyst composition. The slurry catalyst composition is prepared in a series of steps, involving mixing a Group VIB metal oxide, particularly molybdenum and aqueous ammonia to form an aqueous mixture and sulfiding the mixture to form a slurry. The slurry is then promoted with a Group VIII metal. Subsequent steps involve mixing the slurry with a hydrocarbon oil, and combining the resulting mixture with hydrogen gas (under conditions which maintain the water in a liquid phase) to produce the active slurry catalyst.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: July 8, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Kaidong Chen, Bruce E. Reynolds
  • Publication number: 20080135450
    Abstract: A process for slurry hydroprocessing, which involves preconditioning a slurry catalyst for activity improvement in vacuum residuum hydroprocessing units Preconditioning the slurry catalyst raises its temperature, thereby reducing shock on the catalyst slurry as it enters the hydroprocessing reactor.
    Type: Application
    Filed: December 6, 2006
    Publication date: June 12, 2008
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Bruce E. Reynolds, Axel Brait
  • Publication number: 20080139379
    Abstract: This application discloses a process for decomposition of ammonium sulfates found in a stream comprising ammonium sulfate and slurry catalyst in oil. The ammonium sulfate is broken down into ammonia and hydrogen sulfide gas. These gases have many uses throughout the refinery, including the preparation of slurry hydroprocessing catalyst.
    Type: Application
    Filed: December 6, 2006
    Publication date: June 12, 2008
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Bruce E. Reynolds, Axel Brait
  • Publication number: 20080139380
    Abstract: This application discloses a process for concentration and deoiling of a slurry catalyst stream for ease of transport to a hydroprocessing unit. The slurry catalyst may then be diluted with oil for use.
    Type: Application
    Filed: December 6, 2006
    Publication date: June 12, 2008
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Bruce E. Reynolds, Axel Brait
  • Patent number: 7238273
    Abstract: The instant invention is directed to a process for upgrading heavy oils using a slurry composition. The slurry composition is prepared by a series of steps, involving mixing a Group VIB metal oxide and aqueous ammonia to form an aqueous mixture, and sulfiding the mixture to form a slurry. The slurry is then promoted with a Group VIII metal. Subsequent steps involve mixing the slurry with a hydrocarbon oil and combining the resulting mixture with hydrogen gas and a second hydrocarbon oil having a lower viscosity than the first oil. An active catalyst composition is thereby formed.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: July 3, 2007
    Assignee: Chevron U.S.A. Inc
    Inventors: Kaidong Chen, Pak C. Leung, Bruce E. Reynolds