Patents by Inventor Bruce E. White

Bruce E. White has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6706599
    Abstract: A multi-bit non-volatile memory device includes a charge storage layer (14) sandwiched between two insulating layers (12 and 16) formed on a semiconductor substrate (10). A thick oxide layer (18) is formed over the charge storage layer (14) and a minimum feature sized hole is etched in the thick oxide layer (18). An opening is formed in the thick oxide layer (18). Side-wall spacers (60) formed on the inside wall of the hole over the charge storage layer have a void (62) between them that is less than the minimum feature size. The side-wall spacers (60) function to mask portions of the charge storage layer (14), when the charge storage layer is etched away, to form the two separate charge storage regions (55 and 57) under the side-wall spacers (60). The device can be manufactured using only one mask step. Separating the charge storage regions prevents lateral conduction of charge in the nitride.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: March 16, 2004
    Assignee: Motorola, Inc.
    Inventors: Michael Sadd, Bruce E. White, Craig T. Swift
  • Publication number: 20030151077
    Abstract: A vertical double gate semiconductor device (10) having separate, non-contiguous gate electrode regions (62, 64) is described. The separate gate electrode regions can be formed by depositing a gate electrode material (28) and anisotropically etching, planarizing or etching back the gate electrode material to form the separate gate electrode regions on either side of the vertical double gate semiconductor device. One (66) or two (68, 70) contacts are formed over the separate gate electrode regions that may or may not be electrically isolated from each other. If formed from polysilicon, the separate gate electrode regions are doped. In one embodiment, the separate gate electrode regions are doped the same conductivity. In another embodiment, an asymmetrical semiconductor device is formed by doping one separate gate electrode region n-type and the other separate gate electrode region p-type.
    Type: Application
    Filed: February 13, 2002
    Publication date: August 14, 2003
    Inventors: Leo Mathew, Bich-Yen Nguyen, Michael Sadd, Bruce E. White
  • Publication number: 20030132500
    Abstract: Both a non-volatile memory (NVM) and a dynamic nanocrystal memory (DNM) are integrated on a semiconductor substrate. Control gates and control dielectrics with embedded nanocrystals or discrete storage elements are formed over differing thicknesses of tunnel dielectrics to form the two memories. Source and drain regions are formed within the semiconductor substrate adjacent to the tunnel dielectrics. Various methods can be used to form a thin tunnel oxide and a thick tunnel oxide by adding minimum processing steps.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 17, 2003
    Inventors: Robert E. Jones, Bruce E. White
  • Patent number: 6576532
    Abstract: A heteroepitaxial structure is made using nanocrystals that are formed closer together than normal lithography patterning would allow. The nanocrystals are oxidized and thus selectively etchable with respect to the substrate and surrounding material. In one case the oxidized nanocrystals are removed to expose the substrate at those locations and selective epitaxial germanium is then grown at those exposed substrate locations. The inevitable formation of the misfit dislocations does minimal harm because they are terminated at the surrounding material. In another case the surrounding material is removed and the germanium is epitaxially grown at the exposed substrate where the surrounding material is removed. The resulting misfit dislocations in the germanium terminate at the oxidized nanocrystals.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: June 10, 2003
    Assignee: Motorola Inc.
    Inventors: Robert E. Jones, Bruce E. White
  • Publication number: 20030102469
    Abstract: A heteroepitaxial structure is made using nanocrystals that are formed closer together than normal lithography patterning would allow. The nanocrystals are oxidized and thus selectively etchable with respect to the substrate and surrounding material. In one case the oxidized nanocrystals are removed to expose the substrate at those locations and selective epitaxial germanium is then grown at those exposed substrate locations. The inevitable formation of the misfit dislocations does minimal harm because they are terminated at the surrounding material. In another case the surrounding material is removed and the germanium is epitaxially grown at the exposed substrate where the surrounding material is removed. The resulting misfit dislocations in the germanium terminate at the oxidized nanocrystals.
    Type: Application
    Filed: November 30, 2001
    Publication date: June 5, 2003
    Inventors: Robert E. Jones, Bruce E. White
  • Patent number: 6531731
    Abstract: Both a non-volatile memory (NVM) and a dynamic nanocrystal memory (DNM) are integrated on a semiconductor substrate. Control gates and control dielectrics with embedded nanocrystals or discrete storage elements are formed over differing thicknesses of tunnel dielectrics to form the two memories. Source and drain regions are formed within the semiconductor substrate adjacent to the tunnel dielectrics. Various methods can be used to form a thin tunnel oxide and a thick tunnel oxide by adding minimum processing steps.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: March 11, 2003
    Assignee: Motorola, Inc.
    Inventors: Robert E. Jones, Jr., Bruce E. White, Jr.
  • Publication number: 20020190343
    Abstract: Both a non-volatile memory (NVM) and a dynamic nanocrystal memory (DNM) are integrated on a semiconductor substrate. Control gates and control dielectrics with embedded nanocrystals or discrete storage elements are formed over differing thicknesses of tunnel dielectrics to form the two memories. Source and drain regions are formed within the semiconductor substrate adjacent to the tunnel dielectrics. Various methods can be used to form a thin tunnel oxide and a thick tunnel oxide by adding minimum processing steps.
    Type: Application
    Filed: June 15, 2001
    Publication date: December 19, 2002
    Inventors: Robert E. Jones, Bruce E. White
  • Patent number: 6330184
    Abstract: A method of operating a semiconductor device that includes a first memory cell with discontinuous storage elements or dots (108) in lieu of a conventional floating gate can be programmed to at least one of three different states. The different states are possible because the read current for the memory cell is different when the dots are programmed near the source region or near the drain region. Embodiments may use two different potentials for power supplies or three different potentials. The two-potential embodiment simplifies the design, whereas the three-potential embodiment has a reduced risk of disturb problems in adjacent unselected memory cells (100B, 100C, and 100D).
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: December 11, 2001
    Assignee: Motorola, Inc.
    Inventors: Bruce E. White, Bo Jiang, Ramachandran Muralidhar
  • Patent number: 6320784
    Abstract: A memory cell (101), its method of formation, and operation are disclosed. In accordance with one embodiment, the memory cell (101) comprises a first and second current carrying electrode (12) a control electrode (19), and doped discontinuous storage elements (17). In accordance with an alternative embodiment, memory cell programming is accomplished by removing or adding an average of approximately at least a first charge (30, 62, 64), which can be electron(s) or hole(s) from each of the doped discontinuous storage elements (17).
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: November 20, 2001
    Assignee: Motorola, Inc.
    Inventors: Ramachandran Muralidhar, Sucharita Madhukar, Bo Jiang, Bruce E. White, Srikanth B. Samavedam, David L. O'Meara, Michael Alan Sadd
  • Patent number: 6307782
    Abstract: Programmable cells (22, 24, 26, 28) may have discontinuous storage elements (228, 248, 268, 288) as opposed to a continuous floating gate. Each cell further includes first and second current carry electrodes (222, 226, 242, 246, 262, 266, 282, 286) and a control gate electrode (224, 244, 264, 284). In one embodiment, potentials for programming can be selected to program a programmable cell relatively quickly without the need for relatively high potentials. Alternatively, programming can be achieved by flowing current in one direction and then in the opposite direction. In some embodiments, time-variant signals can used during an operation. Embodiments of the present invention can be used with different types of programmable cells including those used in memory arrays and in field programmable gate arrays.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: October 23, 2001
    Assignee: Motorola, Inc.
    Inventors: Michael Alan Sadd, Bruce E. White, Ramachandran Muralidhar
  • Patent number: 6297095
    Abstract: A semiconductor memory device with a floating gate that includes a plurality of nanoclusters (21) and techniques useful in the manufacturing of such a device are presented. The device is formed by first providing a semiconductor substrate (12) upon which a tunnel dielectric layer (14) is formed. A plurality of nanoclusters (19) is then grown on the tunnel dielectric layer (14). After growth of the nanoclusters (21), a control dielectric layer (20) is formed over the nanoclusters (21). In order to prevent oxidation of the formed nanoclusters (21), the nanoclusters (21) may be encapsulated using various techniques prior to formation of the control dielectric layer (20). A gate electrode (24) is then formed over the control dielectric (20), and portions of the control dielectric, the plurality of nanoclusters, and the gate dielectric that do not underlie the gate electrode are selectively removed.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: October 2, 2001
    Assignee: Motorola, Inc.
    Inventors: Ramachandran Muralidhar, Chitra K. Subramanian, Sucharita Madhukar, Bruce E. White, Michael A. Sadd, Sufi Zafar, David L. O'Meara, Bich-Yen Nguyen
  • Patent number: 6274899
    Abstract: A dielectric film (110) is formed overlying a semiconductor device substrate (10). A dielectric post (204) having an outer peripheral boundary having sidewalls is formed over the dielectric film (110). A first conductive film (402) is deposited at least along the sidewalls of the dielectric post (204) to form a lower electrode. A capacitor dielectric film (1801) is deposited on the first conductive film, and a upper electrode (1802) is formed on the capacitor dielectric film (1801).
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: August 14, 2001
    Assignee: Motorola, Inc.
    Inventors: Bradley M. Melnick, Bruce E. White, Jr., Douglas R. Roberts, Bo Jiang
  • Patent number: 6274424
    Abstract: A method for forming an improved embedded DRAM structure, that is formed on-chip with CMOS logic portions, begins by forming dual inlaid regions (34a through 34c). The region (34a) is a portion of a dual inlaid region which is filled with an oxidation tolerant material (e.g., iridium or ruthenium) to form a metallic plug (36a). This plug (36a) forms a storage node region for a DRAM and electrically contacts to a current electrode (26) of a DRAM pass transistor. Opening (34b) is filled concurrently with the filling of opening (34a), to form a metallic plug (36b) which forms a bit line contact for the DRAM cell. A top portion of the dual inlaid structure (34c) is filled concurrent with regions (34a and 34b) to enable formation of a bottom electrode of the ferroelectric DRAM capacitor. Since the geometry of the region (36c) is defined by dual inlaid/CMP processing, no RIE-defined sidewall of the bottom capacitor electrode is present whereby capacitor leakage current is reduced.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: August 14, 2001
    Assignee: Motorola, Inc.
    Inventors: Bruce E. White, Jr., Robert Edwin Jones, Jr.
  • Patent number: 6235603
    Abstract: A first etch stop layer (14) is formed over a semiconductor substrate (10). A first dielectric layer (20) is formed over the first etch stop layer (14). An opening (22) is formed in the first dielectric layer (20). The opening (22) extends through the first dielectric layer (20) and exposes a first conductive material (18) under the first dielectric layer (20). A second conductive material (30) is deposited over the semiconductor substrate (10) and within the opening (22). The second conductive material (30) electrically contacts the first conductive material (18). Portions of the second conductive material (30) lying outside of the opening (22) are removed and then portions of the first dielectric layer (20) are removed to expose portions of the first etch stop layer (14).
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: May 22, 2001
    Assignee: Motorola Inc.
    Inventors: Bradley M. Melnick, Hideo Oi, Bruce E. White, Jr., Robert Edwin Jones
  • Patent number: 6172905
    Abstract: A method of operating a semiconductor device that includes a first memory cell with discontinuous storage elements or dots (108) in lieu of a conventional floating gate can be programmed to at least one of three different states. The different states are possible because the read current for the memory cell is different when the dots are programmed near the source region or near the drain region. Embodiments may use two different potentials for power supplies or three different potentials. The two-potential embodiment simplifies the design, whereas the three-potential embodiment has a reduced risk of disturb problems in adjacent unselected memory cells (100B, 100C, and 100D).
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: January 9, 2001
    Assignee: Motorola, Inc.
    Inventors: Bruce E. White, Bo Jiang, Ramachandran Muralidhar
  • Patent number: 6130102
    Abstract: A method for forming an improved embedded DRAM structure, that is formed on-chip with CMOS logic portions, begins by forming dual inlaid regions (34a through 34c). The region (34a) is a portion of a dual inlaid region which is filled with an oxidation tolerant material (e.g., iridium or ruthenium) to form a metallic plug (36a). This plug (36a) forms a storage node region for a DRAM and electrically contacts to a current electrode (26) of a DRAM pass transistor. Opening (34b) is filled concurrently with the filling of opening (34a), to form a metallic plug (36b) which forms a bit line contact for the DRAM cell. A top portion of the dual inlaid structure (34c) is filled concurrent with regions (34a and 34b) to enable formation of a bottom electrode of the ferroelectric DRAM capacitor. Since the geometry of the region (36c) is defined by dual inlaid/CMP processing, no RIE-defined sidewall of the bottom capacitor electrode is present whereby capacitor leakage current is reduced.
    Type: Grant
    Filed: November 3, 1997
    Date of Patent: October 10, 2000
    Assignee: Motorola Inc.
    Inventors: Bruce E. White, Jr., Robert Edwin Jones, Jr.
  • Patent number: 6107136
    Abstract: A dielectric film (110) is formed overlying a semiconductor device substrate (10). A dielectric post (204) having an outer peripheral boundary having sidewalls is formed over the dielectric film (110). A first conductive film (402) is deposited at least along the sidewalls of the dielectric post (204) to form a lower electrode. A capacitor dielectric film (1801) is deposited on the first conductive film, and a upper electrode (1802) is formed on the capacitor dielectric film (1801).
    Type: Grant
    Filed: August 17, 1998
    Date of Patent: August 22, 2000
    Assignee: Motorola Inc.
    Inventors: Bradley M. Melnick, Bruce E. White, Jr., Douglas R. Roberts, Bo Jiang
  • Patent number: 5773314
    Abstract: A method for forming an embedded DRAM structure along with tungsten plugged MOS transistor devices begins by forming capacitor tungsten plugs (46) and bit-line tungsten plugs (44). A bottom capacitor electrode (48b) is formed to protect the tungsten plug (46). Simultaneously, an optionally-removable barrier region (48a) is formed to protect the plug (44). A capacitor dielectric (52) is deposited and oxygen annealed to form a ferroelectric capacitor material. The barrier (48a) and the lower electrode (48b) protect all of the tungsten plugs (46 and 44) from being adversely oxidized by the oxygen anneal. A top electrode (54 and 56) of the ferroelectric capacitor is then deposited, lithographically patterned, and etched. The lithographic patterning and etching of the top electrode may also be further utilized to remove the barrier region (48a).
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: June 30, 1998
    Assignee: Motorola, Inc.
    Inventors: Bo Jiang, Peter Zurcher, Robert E. Jones, Bruce E. White