Patents by Inventor Bruce Fletcher Johnson

Bruce Fletcher Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030032830
    Abstract: Organolead compounds such as tetraethyllead are useful in catalyst compositions for the oxidative carbonylation of hydroxyaromatic compounds to diaryl carbonates. They are employed in combination with a Group 8, 9, or 10 metal such as palladium, or a compound thereof, and a bromide or chloride such as tetraethylammonium bromide.
    Type: Application
    Filed: June 6, 2002
    Publication date: February 13, 2003
    Inventors: Kirill Vladimirovich Shalyaev, Bruce Fletcher Johnson
  • Patent number: 6514900
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes a catalytic amount of an inorganic co-catalyst containing titanium. In various alternative embodiments, the carbonylation catalyst system can include an effective amount of a palladium source and an effective amount of a halide composition. Further alternative embodiments can include catalytic amounts of various inorganic co-catalyst combinations.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: February 4, 2003
    Assignee: General Electric Company
    Inventors: James Lawrence Spivack, James Norman Cawse, Donald Wayne Whisenhunt, Jr., Bruce Fletcher Johnson, Grigorii Lev Soloveichik
  • Patent number: 6512134
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds is disclosed. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes an effective amount of at least one Group 8, 9, or 10 metal source; an effective amount of at least one bromide composition; an effective amount of at least one activating organic solvent; an effective amount of a combination of inorganic co-catalysts comprising at least one titanium source and at least one copper source; and an effective amount of at least one base.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: January 28, 2003
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Grigorii Lev Soloveichik, Bruce Fletcher Johnson
  • Publication number: 20030004053
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes an effective amount of a Group VIII B metal source; an effective amount of a bromide composition; an effective amount of an activating organic solvent; an effective amount of a combination of inorganic co-catalysts comprising a lead source and a copper source; and an effective amount of a base.
    Type: Application
    Filed: July 8, 2002
    Publication date: January 2, 2003
    Inventors: Grigorii Lev Soloveichik, Kirill Vladimirovich Shalyaev, Marsha Mottel Grade, Bruce Fletcher Johnson
  • Publication number: 20020183539
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds is disclosed. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes an effective amount of at least one Group 8, 9, or 10 metal source; an effective amount of at least one bromide composition; an effective amount of at least one activating organic solvent; an effective amount of a combination of inorganic co-catalysts comprising at least one titanium source and at least one copper source; and an effective amount of at least one base.
    Type: Application
    Filed: May 20, 2002
    Publication date: December 5, 2002
    Inventors: Kirill Vladimirovich Shalyaev, Grigorii Lev Soloveichik, Bruce Fletcher Johnson
  • Publication number: 20020177521
    Abstract: The present invention provides a method and catalyst composition for carbonylating aromatic hydroxy compounds, comprising the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst composition comprising an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of a combination of inorganic co-catalysts comprising at least one Group 4 metal source and at least one Group II metal source, an effective amount of at least one salt co-catalyst with an anion selected from the group consisting of carboxylate, benzoate, acetate, sulfate, and nitrate, wherein the carbonylation catalyst composition is free of a halide source.
    Type: Application
    Filed: April 30, 2002
    Publication date: November 28, 2002
    Inventors: Kirill Vladimirovich Shalyaev, Grigorii Lev Soloveichik, Donald Wayne Whisenhunt, Bruce Fletcher Johnson
  • Publication number: 20020168292
    Abstract: Computerized systems and methods for planning, preparing, tracking, and analyzing a plurality of chemical reactions including a planner for planning how much of each of a plurality of materials is to be delivered to each of a plurality of reaction vessels; a delivery device for delivering a predetermined amount of each of the plurality of materials to each of the plurality of reaction vessels; a reaction device for reacting the plurality of materials disposed within each of the plurality of reaction vessels; a measuring device for testing and measuring the reacted contents of each of the plurality of reaction vessels; and an analyzer for analyzing the reacted contents of each of the plurality of reaction vessels to determine the amount of at least one component present in the reacted contents and to determine the relative performance of the materials disposed within each of the plurality of reaction vessels.
    Type: Application
    Filed: May 14, 2001
    Publication date: November 14, 2002
    Inventors: Donald Wayne Whisenhunt, James Norman Cawse, Bruce Fletcher Johnson, Tracey Marie Jordan, Ralph Joseph May, Eric Douglas Williams, Kirill Vladimirovich Shalyaev, Michael Jarlath Brennan, Carl Matthew Laurence Sundling, James Lawrence Spivack
  • Patent number: 6465675
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes an effective amount of a Group VIII B metal source; an effective amount of a bromide composition; an effective amount of an activating organic solvent; an effective amount of a combination of inorganic co-catalysts comprising a lead source and a copper source; and an effective amount of a base.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: October 15, 2002
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, Kirill Vladimirovich Shalyaev, Marsha Mottel Grade, Bruce Fletcher Johnson
  • Publication number: 20020147363
    Abstract: In one embodiment, the present invention provides a method of producing a homogeneous chemical reaction utilizing multiphase starting materials. The method includes the steps of providing a first reactant system embodied in a liquid and contacting the liquid with a second reactant system embodied in a gas. The liquid is arrayed in a form having dimensions such that the reaction rate of the homogeneous chemical reaction is essentially independent of the mass transport rate of the second reactant system into the liquid. The present invention further provides a method of performing simultaneous homogeneous chemical reactions utilizing multiphase reactant systems. The present invention is also directed to vessels for accommodating homogeneous chemical reactions.
    Type: Application
    Filed: March 28, 2002
    Publication date: October 10, 2002
    Applicant: General Electric Company
    Inventors: James Lawrence Spivack, Bruce Fletcher Johnson, John Yaw Ofori, Eric Douglas Williams
  • Patent number: 6462217
    Abstract: Organolead compounds such as tetraethyllead are useful in catalyst compositions for the oxidative carbonylation of hydroxyaromatic compounds to diaryl carbonates. They are employed in combination with a Group 8, 9, or 10 metal such as palladium, or a compound thereof, and a bromide or chloride such as tetraethylammonium bromide.
    Type: Grant
    Filed: October 30, 2000
    Date of Patent: October 8, 2002
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Bruce Fletcher Johnson
  • Patent number: 6440892
    Abstract: The present invention provides a method and catalyst composition for carbonylating aromatic hydroxy compounds, comprising the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst composition comprising an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of a combination of inorganic co-catalysts comprising at least one Group 4 metal source and at least one Group 11 metal source, an effective amount of at least one salt co-catalyst with an anion selected from the group consisting of carboxylate, benzoate, acetate, sulfate, and nitrate, wherein the carbonylation catalyst composition is free of a halide source.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: August 27, 2002
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Grigorii Lev Soloveichik, Donald Wayne Whisenhunt, Jr., Bruce Fletcher Johnson
  • Patent number: 6440893
    Abstract: A method and catalyst composition for economically producing aromatic carbonates from aromatic hydroxy compounds is disclosed. The present invention provides a method for carbonylating aromatic hydroxy compounds, comprising the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a halide-free carbonylation catalyst composition comprising an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of a first inorganic co-catalyst comprising at least one Group 14 metal source, an effective amount of a salt co-catalyst, and optionally an effective amount of a second inorganic co-catalyst selected from the group consisting of a Group 4 metal source, a Group 7 metal source, a Group 11 metal source, and a lanthanide element source, and optionally an effective amount of a base.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: August 27, 2002
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Bruce Fletcher Johnson, Donald Wayne Whisenhunt, Jr., Grigorii Lev Soloveichik
  • Publication number: 20020099235
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds is disclosed. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes an effective amount of at least one Group 8, 9, or 10 metal source; an effective amount of at least one bromide composition; an effective amount of at least one activating organic solvent; an effective amount of a combination of inorganic co-catalysts comprising at least one titanium source and at least one copper source; and an effective amount of at least one base.
    Type: Application
    Filed: November 30, 2000
    Publication date: July 25, 2002
    Applicant: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Grigorii Lev Soloveichik, Bruce Fletcher Johnson
  • Patent number: 6420587
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes a catalytic amount of an inorganic co-catalyst containing lead and a catalytic amount of an inorganic co-catalyst containing titanium. In various alternative embodiments, the carbonylation catalyst system can include an effective amount of a palladium source and an effective amount of a halide composition. Further alternative embodiments can include catalytic amounts of various inorganic co-catalyst combinations.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: July 16, 2002
    Assignee: General Electric Company
    Inventors: James Lawrence Spivack, Donald Wayne Whisenhunt, James Norman Cawse, Bruce Fletcher Johnson, Grigorii Lev Soloveichik, John Yaw Ofori, Eric James Pressman
  • Patent number: 6403821
    Abstract: Hydroxyaromatic compounds such as phenol are carbonylated with oxygen and carbon monoxide in the presence of a catalyst system comprising a Group VIIIB metal, preferably palladium; an alkali metal or alkaline earth metal halide, preferably sodium bromide; and a promoter compound which is at least one C2-8 aliphatic or C7-10 aromatic mono- or dinitrile, preferably acetonitrile or adiponitrile. The catalyst system also preferably contains a compound of a non-Group VIIIB metal, preferably lead.
    Type: Grant
    Filed: October 2, 2000
    Date of Patent: June 11, 2002
    Assignee: General Electric Company
    Inventors: Eric James Pressman, Grigorii Lev Soloveichik, Bruce Fletcher Johnson, Kirill Vladimirovich Shalyaev
  • Patent number: 6380417
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes a catalytic amount of a combination of inorganic co-catalysts containing manganese and nickel; manganese and iron; manganese and chromium; manganese and cerium; manganese and europium; manganese, cerium, and europium; manganese, iron, and europium; or manganese and thorium. In various alternative embodiments, the carbonylation catalyst system can include an effective amount of a palladium source and an effective amount of a halide composition. Further alternative embodiments can include catalytic amounts of various other inorganic co-catalyst combinations.
    Type: Grant
    Filed: September 15, 2000
    Date of Patent: April 30, 2002
    Assignee: General Electric Company
    Inventors: James Lawrence Spivack, Donald Wayne Whisenhunt, Jr., James Norman Cawse, Bruce Fletcher Johnson, Grigorii Lev Soloveichik, John Yaw Ofori, Eric James Pressman
  • Patent number: 6372683
    Abstract: A method and catalyst system for producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the method includes the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system having catalytic amounts of the following components: a Group VIII B metal source; a combination of inorganic co-catalysts including a copper source and at least one of a titanium source or a zirconium source; an onium chloride composition; and a base. Alternative embodiments include inorganic co-catalyst combinations of a lead source and at least one of a titanium source or a manganese source.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: April 16, 2002
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Grigorii Lev Soloveichik, Bruce Fletcher Johnson, Donald Wayne Whisenhunt, Jr.
  • Patent number: 6365538
    Abstract: A method and catalyst system for producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the method includes the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system having catalytic amounts of the following components: a Group VIII B metal source; an alkaline metal chloride; a polyether; and a base. Alternative embodiments substitute a catalytic amount of a nitrile promoter for the polyether.
    Type: Grant
    Filed: January 31, 2000
    Date of Patent: April 2, 2002
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Grigorii Lev Soloveichik, Bruce Fletcher Johnson, Donald Wayne Whisenhunt, Jr.
  • Patent number: 6355597
    Abstract: A catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a carbonylation catalyst system that includes a catalytic amount of an inorganic co-catalyst containing bismuth. In various alternative embodiments, the carbonylation catalyst system can include an effective amount of a palladium source and an effective amount of a halide composition. Further alternative embodiments can include catalytic amounts of various inorganic co-catalyst combinations.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: March 12, 2002
    Assignee: General Electric Company
    Inventors: James Lawrence Spivack, Donald Wayne Whisenhunt, Jr., James Norman Cawse, Bruce Fletcher Johnson, Kirill Shalyaev
  • Patent number: 6346499
    Abstract: Hydroxyaromatic compounds such as phenol are carbonylated with oxygen and carbon monoxide in the presence of a catalyst system comprising a metal from Groups 8-10 of the Periodic Table having an atomic number of at least 44, preferably palladium; an alkali metal or alkaline earth metal halide, preferably sodium bromide; at least one carboxylic acid amide such as N-methylpyrrolidone or dimethylacetamide; and a cocatalyst which is a compound of one or more metals including copper, titanium, zinc, lead, cerium and manganese.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: February 12, 2002
    Assignee: General Electric Company
    Inventors: Bruce Fletcher Johnson, Grigorii Lev Soloveichik, Eric James Pressman, Kirill Vladimirovich Shalyaev