Patents by Inventor Bruce Gnade

Bruce Gnade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6593638
    Abstract: A preferred embodiment of this invention comprises a conductive lightly donor doped perovskite layer (e.g. lightly La doped BST 34), and a high-dielectric-constant material layer (e.g. undoped BST 36) overlaying the conductive lightly donor doped perovskite layer. The conductive lightly donor doped perovskite layer provides a substantially chemically and structurally stable electrical connection to the high-dielectric-constant material layer. A lightly donor doped perovskite generally has much less resistance than undoped, acceptor doped, or heavily donor doped HDC materials. The amount of donor doping to make the material conductive (or resistive) is normally dependent on the process conditions (e.g. temperature, atmosphere, grain size, film thickness and composition). This resistivity may be further decreased if the perovskite is exposed to reducing conditions.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 15, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Scott R. Summerfelt, Howard R. Beratan, Bruce Gnade
  • Patent number: 6319542
    Abstract: A preferred embodiment of this invention comprises a conductive lightly donor doped perovskite layer (e.g. lightly La doped BST 34), and a high-dielectric-constant material layer (e.g. undoped BST 36) overlaying the conductive lightly donor doped perovskite layer. The conductive lightly donor doped perovskite layer provides a substantially chemically and structurally stable electrical connection to the high-dielectric-constant material layer. A lightly donor doped perovskite generally has much less resistance than undoped, acceptor doped, or heavily donor doped HDC materials. The amount of donor doping to make the material conductive (or resistive) is normally dependent on the process conditions (e.g. temperature, atmosphere, grain size, film thickness and composition). This resistivity may be further decreased if the perovskite is exposed to reducing conditions.
    Type: Grant
    Filed: May 26, 1995
    Date of Patent: November 20, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Scott R. Summerfelt, Howard R. Beratan, Bruce Gnade
  • Patent number: 6204069
    Abstract: A preferred embodiment of this invention comprises a conductive lightly donor doped perovskite layer (e.g. lightly La doped BST 34), and a high-dielectric-constant material layer (e.g. undoped BST 36) overlaying the conductive lightly donor doped perovskite layer. The conductive lightly donor doped perovskite layer provides a substantially chemically and structurally stable electrical connection to the high-dielectric-constant material layer. A lightly donor doped perovskite generally has much less resistance than undoped, acceptor doped, or heavily donor doped HDC materials. The amount of donor doping to make the material conductive (or resistive) is normally dependent on the process conditions (e.g. temperature, atmosphere, grain size, film thickness and composition). This resistivity may be further decreased if the perovskite is exposed to reducing conditions.
    Type: Grant
    Filed: October 3, 1994
    Date of Patent: March 20, 2001
    Assignee: Texas Instruments Incorporated
    Inventors: Scott R. Summerfelt, Howard R. Beratan, Bruce Gnade
  • Patent number: 6033919
    Abstract: A capacitive structure on an integrated circuit and a method of making the same are disclosed, which is particularly useful in random-access memory devices. Generally, the method of the present invention comprises the steps of forming a substantially vertical temporary support 54 (preferably by forming a cylindrical aperture in an insulating layer) on a semiconductor substrate 10 and forming a substantially vertical dielectric film 32 (preferably a high dielectric constant perovskite-phase dielectric film, and more preferably barium strontium titanate) on temporary support 54. The method further comprises depositing a first conductive (e.g. platinum) electrode 60 on substantially vertical dielectric film 32, and subsequently replacing temporary support 54 with a second conductive (e.g. platinum) electrode 64, such that a thin film capacitor 44 which is substantially vertical with respect to substrate 10 is formed.
    Type: Grant
    Filed: October 22, 1997
    Date of Patent: March 7, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Bruce Gnade, Scott Summerfelt, Peter Kirlin
  • Patent number: 5569058
    Abstract: A porous dielectric material such as silica-based aerogel is used as the dielectric layer 48 between the gate and the cathode on the emitter plate 12 of a field emission device. Aerogel, which can have a relative dielectric constant as low as 1.03, is deposited over the resistive layer 44 of the emitter plate 12. Metal layer 49, functioning as the gate electrode, is subsequently deposited over the aerogel layer 48. The use of aerogel as a gate dielectric reduces power consumption. In a disclosed embodiment, aerogel layer 48 is comprised of sublayers 48a, 48b, and 48c of aerogels of differing densities, thereby providing better adhesion of the aerogel gate dielectric to both the resistive layer 44 and metal layer 49. Methods of fabricating the aerogel gate dielectric are disclosed.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: October 29, 1996
    Assignee: Texas Instruments Incorporated
    Inventors: Bruce Gnade, Chih-Chen Cho, Jules D. Levine
  • Patent number: 5525857
    Abstract: A porous dielectric material such as silica-based aerogel is used as the dielectric layer 48 between the gate and the cathode on the emitter plate 12 of a field emission device. Aerogel, which can have a relative dielectric constant as low as 1.03, is deposited over the resistive layer 44 of the emitter plate 12. Metal layer 49, functioning as the gate electrode, is subsequently deposited over the aerogel layer 48. The use of aerogel as a gate dielectric reduces power consumption. In a disclosed embodiment, aerogel layer 48 is comprised of sublayers 48a, 48b, and 48c of aerogels of differing densities, thereby providing better adhesion of the aerogel gate dielectric to both the resistive layer 44 and metal layer 49. Methods of fabricating the aerogel gate dielectric are disclosed.
    Type: Grant
    Filed: August 19, 1994
    Date of Patent: June 11, 1996
    Assignee: Texas Instruments Inc.
    Inventors: Bruce Gnade, Chih-Chen Cho, Jules D. Levine
  • Patent number: 5504614
    Abstract: A method of fabricating a digital micromirror device (DMD) (10) spatial light modulator (SLM) with a hardened superstructure hinge (16). The invention comprises strengthening a hinge layer material (36) by ion implantation before etching the hinge layer material (36) to form the hinge (16), but could be implanted after etching the hinge (16). The ion implantation is applied with a predetermined energy to concentrate the implanted material (62) at the center of the hinge layer material (36). The entire process is performed using conventional robust semiconductor processes, at low temperatures. Through ion implantation, the DMD hinge (16) is strengthened to minimize or eliminate the possibility of creep. A combination of ions could be implanted if desired. The ion chosen is based on the solubility of the hinge material.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: April 2, 1996
    Assignee: Texas Instruments Incorporated
    Inventors: Douglas A. Webb, Bruce Gnade