Patents by Inventor Bruce Heaston

Bruce Heaston has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060262479
    Abstract: A current control system including a load, a power source in selective communication with the load and an energy management regulator adapted to receive electrical energy from the load and transfer the electrical energy to the power source.
    Type: Application
    Filed: May 16, 2006
    Publication date: November 23, 2006
    Inventor: Bruce Heaston
  • Patent number: 7049876
    Abstract: A level shifting circuit functions by taking an input signal, producing a complement of the input signal, applying the input signal and its complement to comparable voltage divider pairs to set up a differential input signal that is applied to a comparator that produces a shifted output signal.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: May 23, 2006
    Assignee: Delphi Technologies, Inc.
    Inventor: Bruce A. Heaston
  • Patent number: 7036804
    Abstract: A hydraulic mount having first and second fluid tracks, and a decoupler functioning as an air spring with two remotely selectable settings. The settings allow tailoring of the air spring characteristics to provide mount damping for differing engine operating states, such as engine idle. A solenoid is used to select a smaller or larger air volume to control the characteristics of the air spring and, in turn, the dynamic response of the hydraulic mount. An integral controller provides switched operation of the solenoid and compensates for variations in temperature and input voltage, as well as minimizing electrical noise generated by the solenoid when it is energized.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: May 2, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Mark O. Bodie, Mark W. Long, Sanjiv Tewani, Ronald Beer, Bruce A. Heaston, Brandon Fedders
  • Publication number: 20060087358
    Abstract: A level shifting circuit functions by taking an input signal, producing a complement of the input signal, applying the input signal and its complement to comparable voltage divider pairs to set up a differential input signal that is applied to a comparator that produces a shifted output signal.
    Type: Application
    Filed: October 25, 2004
    Publication date: April 27, 2006
    Inventor: Bruce Heaston
  • Patent number: 6892864
    Abstract: A temperature compensation method for controlling a damping force of a magnetorheological (MR) damper is disclosed. First, a base operating current as a function of a desired force level of a damping force of the MR damper is determined, and a temperature compensation as a function of an operating temperature of the MR damper is determined. Finally, the temperature compensation is applied to the base operating current to generate a compensated operating current as a function of the desired force level of the damping force and the operating temperature of the MR damper. To refine the compensated operating current, the temperature compensation can be determined as both a function of the operating temperature of the MR damper and a relative velocity of the MR damper.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: May 17, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: Vardarajan R. Iyengar, Bruce A. Heaston, John F. Hoying, David A. Shal, Darin D. Dellinger, Khaled M. Jundi, Jesse D. Jones, Timothy J. Juuhl, Robin Oakley, David J. Barta, Michael R. Lukuc
  • Publication number: 20050088183
    Abstract: A resistor (having a resistance of Rs) is connected in series with an inductor whose inductance and/or resistance is desired to be determined. An alternating voltage (such as a sinusoidal voltage) is applied across the series-connected resistor and inductor, wherein the alternating voltage has a frequency ?, a unique maximum or minimum value Vm, an average value and a unique crossover of the average value. The voltage Vr is measured across the resistor when the alternating voltage is at its maximum or minimum value. The voltage Vl is measured across the resistor when the alternating voltage is at its average value. The resistance RL of the inductor is calculated from an equation in which RL is a function of Vm, Vr , Rs and Vl. The inductance L of the inductor is calculated from an equation in which L is a function of Vl, Rl, Rs, Vr and ?.
    Type: Application
    Filed: September 29, 2004
    Publication date: April 28, 2005
    Inventors: Thomas Baudendistel, Donald Morelli, Bruce Heaston, Curtis Cyran, Jeff Foust
  • Publication number: 20050029720
    Abstract: A hydraulic mount having first and second fluid tracks, and a decoupler finctioning as an air spring with two remotely selectable settings. The settings allow tailoring of the air spring characteristics to provide mount damping for differing engine operating states, such as engine idle. A solenoid is used to select a smaller or larger air volume to control the characteristics of the air spring and, in turn, the dynamic response of the hydraulic mount. An integral controller provides switched operation of the solenoid and compensates for variations in temperature and input voltage, as well as minimizing electrical noise generated by the solenoid when it is energized.
    Type: Application
    Filed: August 7, 2003
    Publication date: February 10, 2005
    Inventors: Mark Bodie, Mark Long, Sanjiv Tewani, Ronald Beer, Bruce Heaston, Brandon Fedders
  • Patent number: 6842014
    Abstract: A resistor (having a resistance of Rs) is connected in series with an inductor whose inductance and/or resistance is desired to be determined. An alternating voltage (such as a sinusoidal voltage) is applied across the series-connected resistor and inductor, wherein the alternating voltage has a frequency ?, a unique maximum or minimum value Vm, an average value and a unique crossover of the average value. The voltage Vr is measured across the resistor when the alternating voltage is at its maximum or minimum value. The voltage Vl is measured across the resistor when the alternating voltage is at its average value. The resistance RL of the inductor is calculated from an equation in which RL is a function of Vm, Vr, Rs and Vl. The inductance L of the inductor is calculated from an equation in which L is a function of Vl, Rl, Rs, Vr and ?.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: January 11, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: Thomas A. Baudendistel, Donald T. Morelli, Bruce Heaston, Curtis Cyran, Jeff A. Foust
  • Publication number: 20040201386
    Abstract: A resistor (having a resistance of Rs) is connected in series with an inductor whose inductance and/or resistance is desired to be determined. An alternating voltage (such as a sinusoidal voltage) is applied across the series-connected resistor and inductor, wherein the alternating voltage has a frequency &ohgr;, a unique maximum or minimum value Vm, an average value and a unique crossover of the average value. The voltage Vr is measured across the resistor when the alternating voltage is at its maximum or minimum value. The voltage Vl is measured across the resistor when the alternating voltage is at its average value. The resistance RL of the inductor is calculated from an equation in which RL is a function of Vm, Vr, Rs and Vl. The inductance L of the inductor is calculated from an equation in which L is a function of Vl, Rl, Rs, Vr and &ohgr;.
    Type: Application
    Filed: April 10, 2003
    Publication date: October 14, 2004
    Inventors: Thomas A. Baudendistel, Donald T. Morelli, Bruce Heaston, Curtis Cyran, Jeff A. Foust
  • Publication number: 20040154887
    Abstract: A suspension control system includes a plurality of damper assemblies, each damper assembly including an integrated velocity sensor and an integrated local controller with a drive unit connected to a damper coil of the damper assembly. A central controller may be connected for communication with the integrated local controller of each damper assembly. The local controller of each damper assembly normally controls the damper assembly independently of the central controller or other damper assemblies for carrying out at least one control function of the damper assembly. When provided, the central controller communicates with the local controller of each damper assembly for overriding local control functions. A related self-contained piston damper unit is also provided.
    Type: Application
    Filed: November 26, 2003
    Publication date: August 12, 2004
    Inventors: Thomas W. Nehl, Fang Deng, David J. Barta, Eric L. Jensen, Bruce A. Heaston, Alexander A. Alexandridis, Malakondaiah Naidu, Suresh Gopalakrishnan
  • Publication number: 20030070892
    Abstract: A temperature compensation method for controlling a damping force of a magnetorheological (MR) damper is disclosed. First, a base operating current as a function of a desired force level of a damping force of the MR damper is determined, and a temperature compensation as a function of an operating temperature of the MR damper is determined. Finally, the temperature compensation is applied to the base operating current to generate a compensated operating current as a function of the desired force level of the damping force and the operating temperature of the MR damper. To refine the compensated operating current, the temperature compensation can be determined as both a function of the operating temperature of the MR damper and a relative velocity of the MR damper.
    Type: Application
    Filed: October 16, 2001
    Publication date: April 17, 2003
    Applicant: DELPHI TECHNOLOGIES INC.
    Inventors: Vardarajan R. Iyengar, Bruce A. Heaston, John F. Hoying, David A. Shal, Darin D. Dellinger, Khaled M. Jundi, Jesse D. Jones, Timothy J. Juuhl, Robin Oakley, David J. Barta, Michael R. Lukuc
  • Patent number: 5465209
    Abstract: A method of determining the trim set value of a vehicle body leveling system comprising the steps of: receiving a trim set command; responsive to the trim set command, retrieving a sensor output from a vehicle height sensor; determining a difference value between the sensor output and a predetermined offset, wherein the offset is indicative of an effect an average sized operator would have on the vehicle height as measured by said height sensor; and programming the difference value into a memory of a level control system, wherein the programmed value is the trim set value for the level control system.
    Type: Grant
    Filed: June 10, 1994
    Date of Patent: November 7, 1995
    Assignee: General Motors Corporation
    Inventors: Steven P. Sammut, Marc J. Georgin, Bruce A. Heaston, Kamal N. Majeed, James J. Kowalik
  • Patent number: 4987351
    Abstract: An AC motor control based on an iterative computation of the motor load and method of accurately determining motor load. At the initiation of motor operation, the load term (%LOAD) is initialized to zero, and the motor is energized in accordance with a predetermined voltage and frequency schedule for producing motor rotation. During the starting interval the power loss term LOSSES and the load term (%LOAD) are iteratively computed as a function of the input voltage and current (V.sub.bus, I.sub.bus) and the motor inverter frequency (IF). When a predetermined motor speed has been achieved, the run mode is initiated. At this point, the load is known based on the iterative load calculations performed during starting, and the motor voltage and inverter frequency are scheduled as a function of motor speed and load. The iterative computation of losses and load continue during the run mode so that changes in the motor load are taken into account.
    Type: Grant
    Filed: January 11, 1990
    Date of Patent: January 22, 1991
    Assignee: General Motors Corporation
    Inventors: Robert J. Disser, Jeff A. Foust, Richard N. Lehnhoff, Donald E. Graham, Bruce A. Heaston
  • Patent number: 4763222
    Abstract: A motor vehicle suspension control includes a solenoid actuator having an actuating coil connected in series with a transistor across an electric power source and circuit protection apparatus for the transistor. The voltage across the transistor is monitored, after a short time delay following turn-on, as a signal indicative of excessive current therethrough. If the signal so indicates, the transistor is turned off for a period of time and then turned on again for another try. This continues for a predetermined maximum number of attempts. Specific clocked digital circuitry is disclosed for controlling the operation and producing the different required time delays or counts.
    Type: Grant
    Filed: April 13, 1987
    Date of Patent: August 9, 1988
    Assignee: General Motors Corporation
    Inventors: Bruce A. Heaston, Jeff A. Foust
  • Patent number: 4685023
    Abstract: A power latch circuit uses first and second bipolar transistors responsive to an actuate voltage to latch into a conductive state with power supplied to a computer and a third bipolar transistor powered by the latch circuit and responsive to a deactivate voltage from the computer to place the first and second transistors in a deactivated state to remove power from the computer and itself. It further uses an FET in parallel with the third bipolar transistor and activated directly from the DC power supply when the second transistor is deactivated to latch the first and second transistors in the deactivated state in spite of voltage fluctuations on the deactivate line which might otherwise cause the latch circuit to reactivate. As an FET, it uses little current through its gate compared to alternative bipolar devices while the latch circuit is deactivated.
    Type: Grant
    Filed: November 14, 1986
    Date of Patent: August 4, 1987
    Assignee: General Motors Corporation
    Inventor: Bruce A. Heaston